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A Lagrangian particle method is used to simulate the collision of coaxial vortex
rings in three dimensions. The scheme combines a 3D, adaptive, viscous, vortex ele-
ment method with a dynamic eddy viscosity model of the subfilter scale stresses. The
vortex method is based on discretization of the vorticity field into Lagrangian vortex
elements and transport of the elements along particle trajectories. The computations
incorporate a mesh redistribution algorithm which creates new elements in regions
of high strain and locally redistributes the vorticity field into a smaller number of
elements when particles tend to cluster. The subfilter scale vorticity model consists of
approximating the effect of unresolved vorticity stresses using a gradient—diffusion
eddy viscosity model, following the development in Part | (J. R. Mansfield, O. M.
Knio, and C. Meneveaul. Comput. Physl45 693 (1998)). Dynamic implemen-
tation of the model relies on determining model coefficients through test-filtering
the Lagrangian particle representation of the filtered vorticity field. Computations
of ring collisions show that, combined, the mesh redistribution scheme and subfil-
ter scale model result in a robust scheme that can be extended into the late stages
of evolution of the flow. In addition, it is shown that the Lagrangian LES scheme
captures several experimentally observed features of the ring collisions, including
turbulent breakdown into small-scale structures and the generation of small-scale
radially propagating vortex rings. © 1999 Academic Press

Key Words:vortex methods; redistribution scheme; Lagrangian simulation; dy-
namic LES.

1. INTRODUCTION

Particle methods are designed for simulation of high-Reynolds-number flows with ¢
centrated vorticity. They are generally based on discretization of the vorticity field |
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Lagrangian elements and transport of these elements along particle trajectories. The ac
tages of this approach stem from the Lagrangian discretization which naturally concentr
computational elements into regions of high vorticity, and from the Lagrangian transp
which minimizes numerical diffusion.

Due to their natural ability to capture inviscid dynamics of concentrated energetic e
dies, vortex methods appear to provide a promising approach to large-eddy-simulatio
turbulent flows. The original attempts at Lagrangian LES may be traced to Chorin’s hair
removal algorithms [1-3]. Essentially, these schemes combine a filament-based me
with a local mesh redistribution algorithm that removes the filaments’ small scales or “he
pins.” Hairpin removal schemes have been used in various applications, including bounc
layers [4], vortex breakdown [5], and vortex reconnection [6].

In their simplest form, hairpin removal schemes rely on the redistribution scheme
filter out the small scales but maintain the same governing equation for the large sce
Thus, the effect of the unresolved scales is assumed to be accounted for by the ha
removal process. Recently proposed extensions of the hairpin removal scheme are bas
renormalized equations of motion for the large scales [7, 8], including a scale-depenc
“dielectric constant” which accounts for the missing scales in the Biot—Savart law [9].

In this paper, we explore a different approach that is applicable to particle-based met
as opposed to filament schemes. Specifically, we incorporate the dynamic eddy diffusi
model introduced in our previous effort [10] into a 3D Lagrangian particle scheme. T
model accounts for the effect of the subfilter scale (SFS) vorticity stresses on the motio
the resolved scales. The properties of the model were analyzed in [10] in lighpradri
tests using direct numerical simulations of isotropic turbulence. In particular, these te
showed that the eddy diffusivity model exhibits fair correlation with the SFS torque due
vortex transport, but poor correlation with the SFS torque due to vortex stretching and tilti
Despite this weakness, the tests indicated that the eddy viscosity model for the vorti
transport equation is potentially more realistic than its primitive variable counterpart
similar conclusion was reached by Winckelmasl. [11]. Numerical experiments were
also conducted in [10] in order to explore a particle discretization of the dynamic S
model. Comparison with spectral collocation results showed that when adequate resolt
is provided the particle discretization yields reasonable predictions of both the SFS torc
and the dynamic model constant.

Motivated by these results, the present effort focuses on the implementation of the
namic eddy diffusivity model proposed in [10] in a Lagrangian particle scheme. As outlin
in Section 2, the latter is based on discretization of the vorticity field into smooth overlappi
vortex elements which move with the local resolved velocity vector. The vorticity carrie
by the elements changes according to stretching by the resolved strain field, molec
diffusion and the modeled SFS torques. The numerical scheme incorporates a local red
bution algorithm which combines a splitting scheme and a merging scheme. The split!
scheme introduces additional particles in regions of high strain, while the merging sche
eliminates particles in regions where they tend to cluster. Thus, the particle redistribu
algorithm mimics the action of hairpin removal in filament-based computations.

In Section 3, the scheme is applied to simulate the collision of coaxial vortex rings
three dimensions. The computational setup resembles the experimental conditions of
and Nickels [12], who provide striking dye visualizations of these collisions. In particulz
the experimental findings in [12] show that the collision of the two rings results, followin
a complex cancellation and reconnection process, in the generation of ringlets propag:
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in the radial direction, away from the center of the collision. However, the experiments
indicate thatin some collision events the rings break down into a cloud of turbulence witt
generating ringlets. This variability and strong dependence on the initial conditions, as
as the development of instabilities, provide a difficult challenge for the computations. Tt
the simulations are used to analyze, qualitatively, possible causes behind the varia
between different collision events.

Irrespective of the outcome of the collision, the violent nature of the interaction betw
the colliding rings provides a stringent test for the computations. The latter show that
present combination of particle redistribution and SFS dynamic model results in a ro
scheme that can capture complex flow dynamics with a reasonable number of elem
The present results and conclusions are summarized in Section 4, and are contraste
previous hairpin removal experiences.

2. FORMULATION AND NUMERICAL SCHEMES

2.1. Formulation

The present LES scheme is based on the filtered vorticity transport equation [13],

o @ . o IR
A R N N s 1)

where
Rij = (witj — &ilij) — (Uw; — Gid)) 2

is the subfilter-scale (SFS) vorticity stress, which accounts for the effect of unresol
velocity and vorticity fluctuations. Tildes are used to denote spatially filtered quantities
order to close the filtered vorticity transport equation, one must provide a model for
vorticity stressR, or alternatively for its divergencéR;; /9x;. Following our efforts in
[10], we focus on the eddy diffusivity model [11, 13]

V.R~g=-V.1Vd), ©)
where
vr = C2A?|S| (4)

is the eddy diffusivity. In Eq. (4)A is the filter size,|§| =/ 2SmnSmn is the modulus of
the filtered strain-rate tensor, a@l is a model constant. As discussed below, the filte
size A is related to the core size of the Lagrangian vortex elements used to represer
vorticity field, while the model constant is determined dynamically in the calculations ba
on multiple filtering operations.

2.2. Numerical Scheme

The present Lagrangian LES scheme is based on a three-dimensional vortex ele
method. The method is based on discretization of the vorticity field into desingulari
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elements, according to [14, 15],

N
WNOG ) =G AV (x— X (1)), (5)

i=1

whereN is the total number of elements;, ¢;, anddV; respectively denote the position,
strength and volume of thi¢h element,

hoo= 5 1(15) ©

is a spherical rapidly decaying core function, d@nd the core radius. The vortex elements
are assumed to have overlapping cores and the smoothing furfcisomssumed to satisfy
some moment conditions [15, 16] which govern the convergence of the scheme.

For an unbounded domain with no internal boundaries, where the flaidstt rest, the
velocity field induced by the above vorticity distribution (5) is given by the desingularize
Biot—Savart law [15],

N

1 X —Xi) x ¢ .
ue) = _E.Z X AU =X, )
where
K,;(x)—/c<|8|);K(r)=4n/0.§2f(§)d§ 8)

is the velocity smoothing kernel correspondingftoln all of the computations below, we
rely on the third-order Gaussian core function [17]

f(r)= 3 exp(—r3) 9)
4
with corresponding velocity kernel
k(r) =1—exp(—rd). (10)

This choice leads to an essentially second-order accurate discretization [15].

Using the particle representation of the velocity (7) and vorticity (5), we transform tt
original problem into a system of coupled evolution equations for the particle positions e
strengths. We have

a,
gt = ucxp) (11)
d .
O~ ¢ vu() + DIy, €106 + DIvr, €O (12)

Here,D[v, ¢](X;) denotes a particle representation of the diffusion term, vidiile-, {]1(Xi)

is a particle representation of the SFS model. Below, we outline the evaluation of the ¢
model but for brevity omit discussion of the diffusion term. However, it is first necessa
to recall various filtering operations originally introduced in [10].
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2.3. Filtering

The present approach is based on associating the resolution limit with the core ra
8, and considering the vorticity field in (5) to be “particle filtered.” We standardize t|
definition of size by relating the core sizg to the width,A, of an equivalent box filter. We
introduce the scaling coefficient= A /§, and define the (standardized) particle filter [10]

x|\ 3
A .
The constant is determined by requiring that the particle filer have the same charac-
teristic size (i.e., the same energy conténG A (k)|°d3k) as the spherical box filter,

Sifxl<A/2
Ba(x) = { 7V - 14
8 {0 otherwise (14)

3 3
GaM) = fare = <C> exp

A (13)

This requirement results in the relationshiip=2.88243, i.e.,c = 2.88243, for the third-
order Gaussian.

In addition to the above particle filter, we also introduce a test filter which is assume
have the same shape as the particle filter but larger width. The test filter is denoted
overbar and, in the framework of the particle representation, is defined by

S a(Xi) expl=(clx — Xi|/A)?]
SN, expl—(clx — Xi|/AN3

qx) = (15)

whereq is the quantity being test filtered amd is the width of the test filter.

2.4. Evaluation of ¢ and SFS model

In order to determine the model constant, the dynamic procedure introduced in Ref.
is implemented. (The dynamic scheme in [10] is an adaptation of the dynamic pre
dure introduced in [18] for the Navier—Stokes equations.) Specifically, it is shown that
“particle-averaged” model constant can be dynamically approximated using [10],

N /
c? - M’ (16)
2i—1Gi -G dV
wherep, = p(Xi), g = q(Xp),
do do
P=14t ~au .
4= A% (§|V&) — A%V - (§V), (18)

d/dt represents the time rate of change for an observer moviig \&hile J_/dt repre-
sents the time rate of change for an observer movirig &t the calculations, the filtered
Lagrangian derivatives are approximated using backward differences; we use [19]

SXi (1), 1) — O(Xi (t — At), t — At)
At

(19)

dw
dt

:|(Xi7t)”
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and

(20)

[d&;] X0 ~ SXi (1), 1) — (X (;)t— At (1), t — At)

In order to estimate, we rely on the Lagrangian expressions developed by Degor
and Mas-Galllic [20], who show that for isotropic spatially varying diffusivity the gradier
diffusion operatoD[b, f]=V - (b(X)V f (X)) can be approximated as

1
Dib. f1(X) ~ D wims (X = X Xe, X (fiy = fio), (21)
i

whereX,, wy, and f; are the particle positions, volumes and strengths in the Lagrangi
representation of , n;(x) = § 35 (|x|/8) is a rapidly decaying smoothing function, and
is a symmetric kernel which satisfies

pnx,y) = u(y,x) and u(x, x) = b(x). (22)

We associatee with the geometric mean diffusivity; i.e., we set [10]

w(X,y) = v/ bx)b(y). (23)

Meanwhile, we relate to the gradient of the core smoothing function using [20]:

df

2
n(r)=g(r)=—FE. (24)

Using (21), the diffusion ternv - (|§|V<I:) is approximated as

- 1 - -
V(SIV@) ~ o D AVISCKDISKPI@X)) — &(Xi)) dVigs(Xj — Xi),  (25)

j=1

P4

where the filtered strain and vorticity values are obtained from the filtered velocity gradie
Vi. The latter is obtained by analytically differentiating the desingularized Biot—Savart |
and evaluating the resulting expression [21]. Equation (15) is then used to compute a
filtered version of the velocity gradient, which naturally yields the test filtered vortgity
and strairs.

The grid-filtered diffusion term is then test filtered according to

SNV - (ISIVE) (X)) expl=(clXi — X;1/A)]

V- (ISIV&)(Xi) =
SN L expl=(elXi — X;1/A)3]

(26)

A similar approach is adopted for the second diffusion in Eq. (18), which involves diffusi
of the test filtered vorticity. Specmcally, Eq. (21) is once again used in conjunction with ti
test filtered vorticityto and strairSS; this yields

- 1 = = — —
V- (ISIV@) (Xi) ~ 72\/|S(Xi)||s(xj)|(d)(xj)—J)(Xi))dnga(xj—Xi)~ (27)

=1

z
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The results of Egs. (26) and (27) are then substituted into Eq. (18), which results in
necessary estimates fqrThe accuracy of the approximations in Egs. (25)—(27) was test
in detail in [10] against spectral DNS of isotropic turbulence. The tests in [10] show t
when the particle representation is sufficiently resolved the predictions of the particle
resentation are in good agreement with spectral results.

Once the differencep andq are evaluated for all the Lagrangian particles, the mod
constant is evaluated from Eq. (16). A priori tests in [10] show that this approach yie
realistic values ofC;. Note, however, that the discrete sum in (16) may yield a negati
quantity. In this situation, the eddy viscosity is simply set to zero, in order to avoid a nega
value. Accordingly, the eddy diffusivity used in the computations is actually given by

vy = max(C2A%, 0)|S|. (28)

Also note that the integral approximation in (21) is also used to evaluate the SFS vort
source term in Eq. (12); this yields

Dlvr, ¢1(X)

| e

= max(C2A?%|S|, 0)8

N
DT VISCOISKDI@X)) — B(X)) dVjgs (X — Xi). (29)
j=1

This completes the description of the particle approximation.

2.5. Local Mesh Refinement

The computations discussed below incorporate a local mesh refinement scheme \
combines particle-splitting and particle-merging algorithms. The particle-splitting al
rithm essentially amounts to locally distributing the vorticity into a larger number of partic
whenever these particles are subjected to large strain. It aims at ensuring that neight
particles have overlapping cores and consequently that an adequate particle represer
is maintained despite severe deformation of the flow map. Prior computations (e.qg., [13
22]) indicate that such local refinement schemes are effective in avoiding rapid deterior:
of the accuracy of the calculations associated with loss of core overlap. In complex flc
however, mesh refinement may lead to excessive growth in the number of computati
elements and in CPU time. The particle-merging algorithm is introduced in order to a\
such a phenomenon. It essentially consists of reducing the number of particles in rec
where the particles tend to cluster.

The particle-splitting algorithm used in the present work is motivated by earlier ex
riences with filament-based algorithms [1, 2, 22], which generally base splitting crite
on the length of individual segments. As mentioned above, a particle-based represen
which does not explicitly track the relative positions of the computational elements is u
in the present work; thus, a new mesh refinement scheme is introduced. The scheme n
the action of segment splitting by assigning to each particle three végthts, k=1, 2, 3,
whose evolution reflects the local deformation. These vectors are regarded as infinite:
material segments originating at the center of each particle. Initially, the vectors are m
ally orthogonal, have unit length, and are aligned with the basis vegtoks=1, 2, 3, of a
right-handed Cartesian coordinate system in which the motion is described. We thus
5x*(0) =€, k=1, 2, 3. As the particles are transported by the flow, the evolution of ti



312 MANSFIELD, KNIO, AND MENEVEAU

corresponding elementary vectors is governed by

D
aéxik =8xK-vuXi), k=1,2,3; (30)

i.e., the “normalized” material segments stretch and tilt according to the local strain fiel
Based on the evolution @fyf, a Lagrangian strain tensgris formed using

E=-{U+UT +UUT}, (31)

NI =

where

_ [axlm —5x*(0) ‘ XM — 8x*(0) ' M — 5x3(0)] (32)

18x*(0)] 18x2(0)] 15x3(0)]

and the superscript T denotes the transpose. The eigenvect®mrefthe principal strain
axes.

The splitting of vortex particles is directly based on the eigenvalués &pecifically,
splitting is performed when the largest eigenvalue exc%edse., when the particle has
stretched to twice its original length along the corresponding eigenvector. This can
illustrated with the simple example of a particle being stretched along-wds by a
velocity field with constant velocity gradient,

1 0 0
Vu= |0 -1 0]. (33)
0 0 0

Following Eq. (32), the material segments are given by

sxtty=[e 0 0] (34)
sx*) =[0 et 0] (35)
sx*w=[0 o 1]". (36)

Attimet = log, 2, the vectosx* has twice its original length, and the tengbis

2—-1 0 0 1 0 O
u=| 0 %i-1 0 |=|0 -3 O]. (37)
0 0 1-1 O 0 O
The strain tensok is then
3
5 0 0
E=|0 -2 o]. (38)
0O 0 O

The eigenvalues dt at this time are A, 0, and—3/8. The eigenvector corresponding
to the eigenvalue /2 is €, the direction in which the particle was stretched to twice it
original length. In general, rotation and stretching lead to more involved expressions
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the above observation still holds; i.e., if an eigenvalu& séaches A, then the particle
has “stretched” to twice its original length along the corresponding eigenvector.

Once the leading eigenvalue Bf exceeds A the particle is split into two daughter
particles. They are placed a distamgg2 away from their parent, along the principal strair
axis. hg is the Cartesian grid size used to discretize the vorticity field at the start of
calculations. Each daughter receives half the volume of their mother and the same v
strength. The material segment vectors on each daughter particle are reset to the orthor
configuration.

In complex flows, such as the ring collisions of the following section, particle splittir
leads to rapid and excessive growth in the number of particles. To control this a part
merging scheme is used. Introduction of the merging scheme is motivated by recent he
(or scale) removal experiences in filament-based computations [1-6, 8], though the pr
procedure appears as a simplified version of flament remeshing. In the computations b
two particles are merged into one whenever the separation distance falls below a thre
B. (Inthe computations, we sgt=hg/2.) If particlesi andj satisfy this criterion, they are
replaced with a single particle whose position, volume, and strength are given by

X161 AV XG1¢ 1A,

Xij =
ICi1dVi +1¢;1dV, (39)
dVij =dV, +de
¢idvi +¢;dVv
. e L) Bt 4

respectively. It is easy to verify that the volume of vorticity is unaffected by merging
splitting, but that neither the splitting or the merging procedure conserves enstroph
kinetic energy.

Implementation of the merging scheme necessitates an extension of the splitting sct
since elementary segmeritgX, k=1, 2, 3, for the merged particles must be defined. T
this end, we combine the segmenfg andsx; of the two consolidating particlasand
j. First, the three vectors corresponding to the smaller particle are scaled by the fe
dV;/dVi, wheredV, > dV;. Second, the largest of the six vectors is selected as the me
semiaxisV*, of an ellipsoid, with the unit vector in this direction beie@. Third, two
mutually orthogonal unit vectors® ande®, are constructed in the plane perpendicular t
the major semiaxis. The semiminor semiaxes of the ellipsi@ndv®, are taken to be in
the directions o&® ande®. Fourth, the length of® is found as the shortest length such tha

2 2 2
SxX - et SxX - P SxX - e©
+ + <1l k=1,...,6. 41
( VA ) ( V8] V8] “

In other words, all six segments fit inside an ellipsoid whose major semiaxis has fehgth
and whose cross-section through its center, perpendicular to the major axis, is a circle
radius|vB|. Last, the length o¥° is calculated as the shortest length such that

2 2 2
XX - et SxX - eB SxX - eC
+ + <1l k=1,...,6. 42
( VA ) < V8] V] e

The material segments of the consolidated partbolg;,, 5x7;, andsx;} , are taken to be the
semiaxes of the ellipsoid?, V&, andv®, respectively.
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2.6. Parallel Implementation

Simulations using the present scheme were performed on the CRAY T3D at the Pittsbt
Supercomputer Center. The methodology used to construct and optimize parallel code:
been directly adapted from [23]. Its essential features consist in distributing the parti
data among all available processors. The particle data are organized into arrays w
are distributed among all the processors following a cyclic distribution scheme; machi
specific directives are used for this purpose. A duplicate copy dbttaddata is also created
at the start of the parallel computations and placed in scratch arrays. Scratch array:
partial convolution sums are also defined. During the parallel computations, each proce
computes binary interactions using the particle data that is resident on its memory. C
the local interactions are computed, each processor communicates to its neighbor the
in the scratch arrays. The computation of local interactions and the communication ¢
define an elementary iteration, which is repeated until the particle data has visited all
processors. At this stage, the necessary convolutions are computed based on the (
partial sum results, and numerical integration of the discrete equation is performed loc
using the resident data.

In addition to providing a detailed description of the parallel algorithm above, Ref. [2
also discusses an extensive performance study. In particular, it is shown that the al
approach results in efficient algorithms with excellent scalability properties. Typically, t
computations below are performed on a 64-processor partition, with a total numbel
elements ranging from % 10° to 1(P. High (>0.9) parallel efficiency is maintained as long
as the number of particles per processor is larger than about 100. At these conditions
performance of the calculations is around 30 MFlops per processor.

3. RESULTS

The numerical scheme described in the previous section is applied to LES of isols
and colliding vortex rings. In the case of the isolated vortex ring, the scheme is usec
compute the self-induced propagation of the ring as well as the growth of 3D azimut
perturbations [22, 24]. Meanwhile, simulations of ring collisions are extended into I
stages, where severe deformation of the vorticity field, including local cancellation &
reconnection, is expected to occur [12]. We start with an illustration of the essential fl
features (3.1) and then examine the behavior of the dynamic SFS model (3.2). We conc
(Section 3.3) with a discussion of the evolution of the enstrophy and kinetic energy, toget
with a brief examination of energy spectra.

3.1. Basic Flow Features

The evolution of the flow is illustrated by plotting at selected time instants the positio
of the Lagrangian particles and/or surfaces of constant enstrophy. The constant-enstr
surfaces are shown in 3D perspective views while the particle positions are presented a
scatter plots oprojectedparticle positions. We generate projections on a streamwise pla
(x-=y) and on an azimuthal plane-{y). The convention used is that the projection plane:
are identified by the corresponding normal vectors and that the axis of the vortex ring
coincides with thez-axis. When generating projections on the streamwisgplane, we
mark the projected locations afl the Lagrangian particles. On the other hand, projection
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TABLE |
Ring Parameters

o/R Core to radius ratio 0.275
Re- /v 2,200

Rep VD/v 1,000

€/R Normalized perturbation amplitude 0.02
Ny Wavenumber of perturbation 12
ho/R Normalized grid size 0.01

Note. Ris the ring radiuse is the core radiud is the circulationV is
the self-induced propagation velocity,s the kinematic viscosity is the
perturbation amplitude,, is the number of azimuthal bending waves, and
hy is the size of the Cartesian grid used for the initial discretization.

on thez—y plane only depict the projected locationraighboringparticles, namely those

lying within a distances from the plane of the projection. As can be appreciated from tl
results below, the streamwise projections generated in this fashion gives an illustratic
secondary motion, while-y projections effectively depict an azimuthal slice of the vorte
core.

Isolated Vortex Ring. The physical parameters characterizing the vortex ring are su
marized in Table I. We start with an axisymmetric vortex ring with core to radius |
tio 0/R=0.275. The Reynolds number based on the ring circulation is=R2,200,
while the Reynolds number based on ring diameter and self-induced translation veloc
Rep = 1,000. The initial distribution of azimuthal vorticity in the core of the ring is show
in Fig. 1. Prior to the calculations, the ring vorticity is perturbed in the azimuthal directi
by displacing the axis of the vortex core using a sinewave perturbation [22]. The ben
wave perturbation is specified in terms of its amplitudend wavenumbehl,,. As shown
in Table |, a perturbation witk/R=0.02 andN,, =12 is selected. For the present ring
parameters [22], this value ®f,, corresponds to the most amplified mode of the Widna
instability [24]. The vorticity distribution of the perturbed vortex ring is discretized ont
Lagrangian particles that are initially distributed on a uniform Cartesian mesh of cell s
ho. Vortex particles whose strength falls below 1% of the peak particle strength are omit
For the present ring, there are 4155 particles at the start of the calculation.

1.00---
08

0.6

w/wo

0.4

0.2

0.0> ) } . 1 r
0.0 0.5 1.0 1.5 2.0

r/a

FIG. 1. Solid line: initial azimuthal vorticity profile in the core of the ring. The dotted line shows the col
smoothing functionr is the radial distance in the azimuthal plane, measured from the center of the core.
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tr/R* = 0 tr/R? = 0
4 T T T T T T T 4 T T T T T T T
3 1 3+ g
21 < 2} J

x [
~ of . ~ OfF .
> >
~1k d 1k i
-2k 4 b i
-r @ | - @ 1
—4 . ! ) ) ! L f —4 ! . ! ! ! f f
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -t 0 1 2 3 4
z/R x/R
2 2
tT/R* = 4.4 tr/R° = 4.4
4 T T T T T T T 4 T T T T T T T
3t . 3t 1
2t . 2t .
1 . 1| .
4 x
< of . < of :
> >
1k 4 1t 4
-2k N -2k 4
_3- @ | —3— @ ]
—4 L ' I 1 i ) 1 —4 L L I L f L L
4 -3 -2 - 12 3 4 e -3 -2 -t T2 3 4

0 0
z/R x/R

FIG. 2. Particle locations for single translating ring with turbulence model. Plotted on the left are projectio
on thez-y plane of Lagrangian particles lying in the slieeA < x < A. The right column shows the projection

of all the particles on thg—y plane. The concentric circles in the lower-right corner show the size of the particl
filter, A, and the test filter, &.

The evolution of the perturbed vortex ring is illustrated in Fig. 2, which shows the dist
bution of vortex particles at selected times, and in Fig. 3 which depicts three-dimensio
perspective views of surfaces of constant vorticity. The vorticity surfaces are plotted us
the same scale and the same vorticity level and the particle plots are generated usin
same scale. The initial four-sector symmetry seen in the particle plots is due to the ini
placement on a Cartesian grid. This symmetry is not noticeable in the vorticity field.

Figure 2 shows that during the course of the simulation the vortex ring travels, frc
right to left, a distance of about two ring diameters. As the ring propagates, the volu
occupied by vortex particles expands to include the space between the core and the
axis. Meanwhile, the ring diameter does not appear to change. Figure 2 also shows
some particles are left in the wake of the ring. These particles contain little vorticity and |
wake appears to have little effect on the dynamics of the vortex cores. This was showr
repeating some of the simulations with particles in the wake removed. The removal m
essentially no difference in the evolution of the particles within the vortex cores.
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tr/R? = 13.2 t0/R? = 13.2
4 T T T T T T T 4 T T T T T T T
3F - 3+ i
2} E 2F E

o o
< of . ~. o} -
> >
b 4 ~it N
-2} 4 -2} i
-3- @ 1 _3- @ )
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FIG. 2—Continued

Figure 3 shows that little change in the shape of the isolated vortex ring occurs du
the simulation. In particular, the thickness of the ring, as perceived from the surface p
appears to remain unchanged. The growth of the perturbation is clearly evident bu
mentioned earlier, the deformation of the ring remains small. This suggests that withir
duration of the computation the vortex ring remains laminar; this is further examined be
in Section 3.2 in light of dynamic computations of turbulent eddy viscosity.

Colliding Vortex Rings. The initial setup in colliding ring simulations consists of twc
coaxial vortex rings initially placed “upstream” and “downstream” of the plaae. The
centroids of the vortex rings are initially at a distance of one ring diameter from the plan
collision. We focus on collisions of initially perturbed vortex rings. Without perturbatio
transition to turbulence was not observed as the colliding rings approach each other,
down and stretch while maintaining perfect axial symmetry. These simulations are
omitted.

The vortex ring lying in the half-space< 0 is an identical copy of the perturbed vortex
ring described above. The second vortex ring is an “image” of the first which is sp
ified in terms of a mapping. Two mappings are considered in the present study. In
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tT'/R? = 0

tT/R? = 4.4

FIG.3. Surface of constant vorticity magnitudg«|| R?/ I' = 1.82) for an isolated vortex ring with turbulence
model.

first mapping, the second ring is generated by reflecting the particles of the first ring w
respect to the plane=0. Thus, the particles positions are mapped in Cartesian coort
nates according tox, y, z) — (X, Y, —z). Meanwhile, the particle strengths are mappec
by (¢x, &y, ¢2) = (—¢x, =&y, ¢z). Note that for this mapping the azimuthal sinewave per
turbation on both rings are in phase. Thus, as the rings approach each other the cre
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LR =22

FIG. 3—Continued

these waves tend to collide first, and the arrangement is therefore referred to as cre
crest alignment or collision. On the other hand, a second mapping is implemented sc
the sinewaves are aligned crest-to-trough, i.e., the perturbations of the rings are o
phase. In this case, the particle positions and strengths are rotated in the azimuthal dire
by an angler/N,. This mapping twists one of the rings half a perturbation wavelengt
While other twisting angles were considered in the calculations, we restrict our atten
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to the cases with crest-to-crest and crest-to-trough alignments and perform the sim
tions both with and without SFS model. Thus, four cases are contrasted in the discus
below.

We start with results obtained for a crest-to-crest collision without turbulence moc
and plot in Fig. 4 the particle locations at selected time instants. In the early stages of
simulation, the rings propagate under their own self-induced motion, and particles w
low vorticity are left in the wakes of the rings. As the rings approach each other, th
translation velocity decreases while their radii increase. As discussed later, this also I
to significant increase in the enstrophy. By/R?=17.6, the two rings can no longer
be distinguished as they have completely merged into a single doughnut-shaped struc
This structure continues to extend in the radial direction, leaving a web of particles arot
the centers. Like the particles left in the wakes of the approaching rings, these parti
carry little vorticity and have consequently little effect on the dynamics of the concentrat
cores. This was tested by repeating some simulations with the particles in the wak
the rings removed. Figure 4 shows that &t/ R> = 19.8 the particles have clumped into
12 groups spaced azimuthally in correspondence with the initial perturbation of the rin
The clumping is also evident in the last framé ( R> = 22), which also shows that irreg-
ularities appear in the positions of the particles.

In the early stages of the simulation the rings are well separated and the interactio
weak. Thus, results for the various cases are quite similar, and differences are only obse
atlater stages. Thus, in discussing the results of the other three cases we omit the early <
of approach towards the plane of collision and focus exclusively on the later stages.

Figure 5 shows distributions of the Lagrangian particles at selected times for the simt
tion of crest-to-crest vortex ring collision with turbulence model. The results show that t
distribution of particles during the simulation is qualitatively similar to that observed in tf
simulation without turbulence model. In particular, the stretching of the vortex rings, th
merger and the generation of 12 distinct particle clusters are observed. However, the re
also indicate that when the turbulence model is included this process occurs at a slc
rate. This can be most easily appreciated by comparing in Figs. 4 and 5 the stretchin
the ring radii at corresponding time instants.

Crest-to-trough vortex ring collisions are illustrated in Fig. 6, which shows patrticle di
tributions obtained from a simulation without turbulence model, and in Fig. 7, which sho
similar distributions for a simulation with turbulence model. The results reveal several
ferences from the crest-to-crest collisions. In particular, the particle distributions in t
crest-to-trough collision have a larger extent in thdirection than in the crest-to-crest col-
lision. Another distinctive feature of the crest-to-trough alignment is that in the late stag
of the collision the particles distributions exhibit 24 distinct clumps; in the crest-to-cre
collisions 12 clumps are instead obtained (Figs. 4 and 5). Thus, the initial alignment of
perturbation appears to have a significant effect on the evolution of the flow.

Meanwhile, comparison of Figs. 6 and 7 indicates that the particle distributions in cre
to-trough collisions simulated with and without turbulence model are similar, at least qu
itatively. Close examination of the results suggests that, as observed for the crest-to-
collisions above, stretching and merger of the rings during collision occur at a slower r
when the turbulence model is active. One can also observe that when the turbulence
is deactivated the clumps of particles are no longer distinct in the final stages of the collis
(Fig. 6); in fact, the particle distribution at the end of the simulation shows organizati
at different scales, in a manner suggestive of turbulence. Meanwhile, when the turbule
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model is included (Fig. 7) the particle distribution appears to be more organized than
obtained with the model omitted.

Additional insight into the evolution of the flow is gained by generating three-dimensio
perspective views of a constant enstrophy surface. Results are shown in Fig. 8 for cre
crest collision without turbulence model, in Fig. 9 for crest-to-crest collision with turbuler
model, in Fig. 10 for crest-to-trough collision without turbulence model, and in Fig.
for crest-to-trough collision with turbulence model. Instantaneous views are generate
the same times at which the corresponding particle distributions are plotted in Figs.
respectively.

Figures 8-11 provide another illustration of the various stages of the head-on colli
of the vortex rings. In particular, the initial “quasi-steady” stages of the motion, the «
celeration and the increase in ring diameter, and the subsequent merger of the ring
clearly depicted. In addition, the surface plots also enable us to further characterize the
stages of the collision. In particular, the results show that the clumping of particles obse
earlier is in fact associated with vortex reconnection, which leads to the formation of si
scale structures. These phenomena occur differently in the various cases and enable
distinguish between them. Specifically, in the crest-to-crest collision without turbulel
model (Fig. 8), early signs of reconnection can be observed AR?> = 19.8. By the end
of the simulationt I'/ R? = 22, the perspective view shows the presence of distinct vortic
structures, which correspond to the 12 clumps of particles seen in Fig. 4. When the tL
lence model is included, Fig. 9 shows that reconnection occurs at later timg/RE = 22,
the colliding rings can still be distinguished, although early signs of reconnection car
detected. By I'/R? = 24.2, however, distinct reconnected vortical structures have forme
and the original rings no longer exist.

As showninFigs. 10 and 11 the details of the reconnection are significantly different w
the initial perturbations of the rings are out of phase. In this case, the perturbations am
in a sinuous fashion during the collision, in a manner similar to the way the bendsinar
grow. Each half-bend of the rings corresponds to one of the 24 clumps of particles se
the corresponding particle distribution shown in Fig. 10t Ry R? = 22 the original rings
have totally disappeared, leaving a disorderly collection of smaller-scale vortical structt
On the other hand, when the turbulence model is included the growth of the perturbat
though still significant, occurs at a slower rate. Significant decay appears to take
before the final stages, where only weak and disorganized structures remain.

We finally note that in all cases considered the head-on collision of the rings natur
leads to the generation of small-scale flow structures and consequently strains the reso
of the computations. The generation of small-scale structure is affected by a variet
phenomena, including the radial stretching of the large-eddy cores, the amplification o
instabilities and vortex merger and reconnection. The effect of small-scale structures o
behavior of the solution, and the role of the turbulence model are further discussed be

3.2. Dynamic Model Coefficient and Eddy Viscosity

Figure 12 shows instantaneous values of the dynamic model coefficierijotted are
curves for the isolated vortex rings, and for colliding vortex rings with crest-to-crest ¢
crest-to-trough alignments. As mentioned above, each of the colliding ring calculati
was performed both with and without turbulence model. When the turbulence mode
deactivated, however, estimates of the dynamic model coefficient and the eddy viscosit
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FIG. 6. Particle locations for crest-to-trough collision without turbulence model. The plots are generate
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nonetheless obtained, but are not used while updating the particle strengths. These est
are also reported in Fig. 12.

In all cases considered, Fig. 12 shows thats close to 0 at the start of the calculation. Ir
the early stages, the computed estimat€dfirst becomes negative, reaching a minimun
aroundt I'/R? = 4.5. (Recall that when the estimate @f is negativevr is set to 0, as
indicated in Eq. (28).) At later times, the curves fof increase and positive values are
reached arountl’/ R? = 7. Soon thereafter, the behavior of the curve for the isolated ril
becomes different from those of the colliding ring calculations. For the single @ng,
remains close to zero, whereas for the colliding rings, the coefficient increases in ve
For the crest-to-crest alignme@f levels off, att I'/R? =13, around 0.004, less than a
third of the theoretical value for homogeneous, isotropic turbulence. The plateau lasts
tI'/R?=16.5 and then drops to zero. Simulations of the crest-to-trough collision a
show a plateau in the value @?, but it lasts a shorter time, and after the plateau tt
coefficient continues to rise. It reaches a peak araungR? =17 of about 0.008, half
the theoretical value for homogeneous, isotropic turbulence. The model coefficient
gradually decreases for the rest of the simulation. Note that the theoretical value showr
reference in Fig. 12 is valid for an ideal case, with Gaussian filter and inertial range sc
Deviations from this value may be expected to arise due to numerical discretization (w
differs from filtering) and due to the fact that the resolution is not in an ideal inertial ran

For the purpose of quantifying the effect 6f on the simulation, we also examine
the spatially averaged turbulence eddy viscosity) = C2A?%( |S| (The strain-rate is a
function of position in the flow field, but averages may be used for simple compariso
The average strain-rate modulus is plotted in Fig. 13 @ng/v is plotted in Fig. 14. The
recorded values are particle averages, calculated directly based on the particle represel
according to(|§|) =3 |§(Xi)| dVi/ >~ dVi. Forthe single ringc|§|) steadily decreases,
dropping to 70% of its initial value at the end of the run. In the colliding ring simulatior
(|§|) first rises then decreases. Its maximum value is about 25% higher for simulat
without the turbulence model than for those using the turbulence model. At later stages
decrease is slower for crest-to-crest collisions than for the crest-to-trough cases.

The plots of turbulent eddy viscosity in Fig. 14 show the aggregate effects of the mc
coefficient and the strain-rate modulus. The variation of the eddy viscosity are domin
by changes in the model coefficient, whose relative variation has much greater range
that of the strain-rate modulus. The strain-rate modulus controls the spatial locations w
the influence of the turbulence model is being experienced, as seen in the breakdown |
volume into quintiles according to vorticity magnitude. In low vorticity regions the turbule
eddy viscosity can be one or two orders of magnitude smaller than in high vorticity regic

The indication from the dynamic model coefficient and the turbulent eddy viscosity ist
the single, isolated ring is not turbulent. The rings colliding crest-to-crest may experie
a degree of turbulence during their collision, which then dies off. The rings colliding cre
to-trough seem to experience a greater degree of turbulence in their collision, and it ap,
to last for longer time.

3.3. Kinetic Energy and Enstrophy Evolution

The evolution of the kinetic energy and enstrophy for the various cases is plotted in Fig
These quantities are evaluated directly from the particle positions and strengths, as ou
in Appendix A. In the present calculations the flow is incompressible and unbounded,
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FIG. 8. Surface of constant vorticity magnitude|| R?/ I' = 1.82) for crest-to-crest collision without turbu-
lence model.

so there are no (physical) kinetic energy sources. Kinetic energy can be dissipated by

molecular viscosity and the turbulence model. Enstrophy is dissipated by molecular
eddy viscosity, but can also be generated by stretching of vortex lines. In addition,

particle representation is not conservative, and both the numerical discretization and
refinement/removal algorithm, may contribute to the evolution of the enstrophy and kine
energy.
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FIG. 8—Continued

Figure 15 shows that for the isolated vortex ring the kinetic energy experiences a st
monotonic decrease, amounting to a 14% drop by the end of the calculation. For the colli
ring simulations, the kinetic energy decreases in the initial stages at the same rate as f
single ring, but then the rate of decline increases. The kinetic energy for all four collis
simulations is similar up to timeI’/ R? = 15 when the crest-to-crest collision simulatior
without a turbulence model begins to level off. The two collision simulations using 1
turbulence model also begin to level off at lower levels of kinetic energy. The crest-to-tro
collisionresultsin alower level of kinetic energy than the crest-to-crest collision. The kine
energy for the simulation without turbulence model of the crest-to-trough collision d
not level off but after arriving at a minimum begins to rise quickly. This indicates seve
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FIG. 8—Continued

deterioration in the particle representation since, as mentioned earlier, there are no sol
of kinetic energy in the flow. At very large timesl}/ R? > 22, the runs using the turbulence
model also show a small, unphysical, rise in kinetic energy.

Figure 15 also shows that for the isolated ring the decay of kinetic energy is accom
nied by a similar decay in the enstrophy, with a 29% drop at the end of the calculati
On the other hand, the enstrophy increases in the colliding ring calculations, indicat
significant vortex stretching. When the turbulence model is applied, the enstrophy cu
levels off byt I'/R? =16 and remains at about 160% its original level for the remainde
of the calculation. For the crest-to-crest collision without turbulence model, a plateau
the enstrophy curve also occurstdt/R? =16, but at higher value; near the end of the
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FIG.9. Surface of constant vorticity magnitudrs|| R?/ ' = 1.82) for crest-to-crest collision with turbulence
model.

simulation, however, the enstrophy starts to rise once more. For the crest-to-trough «
sion without turbulence model, the enstrophy increases monotonically; the highest gr
rate occur at the end of the calculation, where unphysical growth in kinetic energy is .
experienced.

Kinetic energy spectra are also calculated for the four collision simulations. The spe
are also computed from the particle positions and strengths, as outlined in Appendi
Energy spectra are shown in Fig. 16 for crest-to-crest collisions, and in Fig. 17 for cres
trough collisions. Curves are generated at timdyR?>=1.1 (early stages of the
simulation), 13.2 (during the stretching-induced enstrophyrise), 17.6 (the enstrophy plat
and 22 or 24.2 (the end of the simulation). Features resolved by the particle filter fall in
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FIG. 10. Surface of constant vorticity magnitudéu{|| R?/ I = 1.82) for crest-to-trough collision without
turbulence model.

rangekA < 7. A hump in the unresolved part of the spectrum is seen at early times whi
may be due to discretization of the vorticity field. For all simulations, low wavenumbe
lose energy as time progresses, while the large wavenumbers gain in amplitude. Fo
present low Reynolds number calculations, no extended inertial range exists.

Energy spectra at the end of the simulation are shown together in Fig. 18 for all fc
collisions. The crest-to-trough collision without turbulence model, which resulted in
sharp, unphysical rise in kinetic energy at the end, exhibits more energy at all waveni
bers than the other three cases. The latter three have essentially the same shape, wi
crest-to-crest collision without turbulence model having somewhat more energy than
two simulations with turbulence model.
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FIG. 11. Surface of constant vorticity magnituded]| R?/ I = 1.82) for crest-to-trough collision with turbu-
lence model.

4. SUMMARY AND DISCUSSION

In this work, a Lagrangian LES scheme is developed. The scheme combines an adz
particle method with a simplified dynamic eddy diffusivity model. The particle scher
incorporates a local redistribution scheme which introduces new patrticles in region
high strain and reduces the number of particles when the particles tend to cluster.
behavior of the scheme is examined in light of parallel computations of isolated vou
rings and collisions of two co-axial rings in three-dimensions. Based on these calculati
the following conclusions are reached:
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1. The behavior of the dynamic model coefficient is consistent with the flow behavi
The model coefficient has low magnitude in the initial stages of the computations, when
flow field is laminar, and only rises to appreciable levels when substantial spatial vortic

fluctuations develop.

2. For the conditions of the simulations, the turbulence model does not affect the pr
agation velocity or diameter expansion of the colliding rings prior to reconnection. On

reconnection starts, the dynamic model limits the rate of enstrophy growth.
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3. The incorporation of dynamic SFS model and mesh redistribution scheme leac
a robust, adaptive Lagrangian particle scheme. This development enables us to extel
computations into the late stages of vortex ring collisions, where severe strain rates pre
Earlier calculations [25] performed using a filament method without a scale removal sch
exhibited an explosive growth in the number of elements and were consequently restr
to the early stages of the collision event.

4. The computations of vortex ring collisions capture several distinctive phenomena
were observed in laboratory experiments [12], including the approach and stretchin
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the rings, the development of three-dimensional azimuthal perturbations, strong interac
between the vortex cores with local cancellations and reconnections, the generatio
small-scale turbulent structures, and the formation of ringlets propagating radially av
from the center of collision. This indicates that numerical diffusion in the present comg
tations is sufficiently low, despite the coarse resolution levels used. Note, however, that
ringlets leaving the collision are at the limits of the particle resolution used, and as are
appear to be blurred. This is typical of LES, in which structures frequently appear fat
(filtered) compared to the crisp appearance of the real structures that can be observ
dye visualization or in DNS.
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FIG. 16. Total energy spectra, crest-to-crest collisions. The top figure is the spectrum for the simula
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shows a-5/3 slope.

5. The computations show that the outcome of the co-axial collision depends on
alignment of the initial azimuthal perturbation imposed on each of the rings. When a cr
to-crest alignment is imposed, the rings approach each other in such a way that their
are locally nearly anti-parallel. This leads to a deformation which resembles the growt
the Crow instability [26] and, following cancellation and reconnection, to the generat
of small-scale ringlets. On the other hand the crest-to-trough alignment results in a
of secondary flow instability which leads to a turbulent breakdown of the colliding rinc
These two types of outcomes are consistent with and provide a plausible explanatio
the experimental observations of Lim and Nickels [12].
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Despite the advantages outlined above, the computations also indicate that the pre
model has some weaknesses which we plan to address in future efforts. One of tl
weaknesses concerns the simplified nature of the scale removal process, which is pres
based on merging particles lying within a critical cutoff period. This approach is ce
tainly less sophisticated than that of hairpin removal, which also involves the relati
orientation of the vorticity vectors in the removal process [2]. Specifically, in hairpin r
moval only segments with nearly antiparallel vorticity are merged. On the other hal
in the present scheme merging of particles with closely aligned vorticity vectors is p
sible; in this case, merging would have an essentially anti-diffusive character. Extens
of the merging scheme along the lines of hairpin removal [2] or filament surgery [6] &
pears to provide a suitable approach for improving this aspect of the particle compt
tions.
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FIG. 18. Total energy spectra at end of simulations. Circles: crest-to-crest without model, triangles: cres
crest with model, crosses: crest-to-trough without model, squares: crest-to-trough with model. All four case
compared atl'/R? = 22 for the simulations without turbulence model afigd R? = 24.2 for the simulations with
model. The slightly later time is selected for the simulations with model because the dissipation due to the n
slightly slows the evolution of the rings.

Another areawhere additional workis needed isin clearly quantifying the effect of the ¢
model, and distinguishing it from the effect of the removal scheme. To this end, one wt
need to extend the Lagrangian computations to model problems where the turbulen
well characterized, e.g. forced isotropic turbulence. An extension of the present Lagrar
scheme to accommodate such a setup is being explored.

Finally, in the present applications the dynamic coefficient is obtained by averac
over all the particles, thus combining information from very different regions of the flc
(e.g. highly strained regions around vortex cores and “inactive” regions in the walk
to determine a single coefficient in space. A conceptually more appealing method |
average in time following particle trajectories [27], an approach that is especially su
for Lagrangian methods. Extensions of the current scheme to incorporate such Lagra
averaging should also be explored in future work.

APPENDIX A. EVALUATION OF ENSTROPHY AND KINETIC ENERGY

In this appendix we derive expressions for the total enstrophy and kinetic energy cc
sponding to a vorticity field given by the particle representation

N
WO =D ¢ dM fsx— Xi). (A-1)
i=1

A.1. Enstrophy
The total enstrophyyV, is defined by

W = ///%|w(x)|2d3x. (A-2)
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The total enstrophy corresponding to the vorticity field in (A-1) is thus given by

U/(chdvfa(x—x)) i

= —ZZ{(C. ¢pAVidVi I (X, X))}, (A-3)
i=1 j=1
where
|(xi,xj)5/// fs(x — Xi) fs(x — X;) d3x. (A-4)

Using a simple change of variabldscan be rewritten as

|(Xi,Xj)=///f5(X—;rije) f5<x+;rije> d3X, (A-5)

wherer;; = |X; — X;| is the distance betweeXy andX; ande is the unit vector in the
direction of X;j — Xj, i.e.,e = (Xj — Xj)/r;;. Since the core smoothing functiofy is
radially symmetric] is independent oé. Consequently, we can write

L (Xi, X)) = g9(X; — X)), (A-6)

where

gr) = /// fs (x — ;re) fs <x+ ;re> d3x. (A-7)

Using the above definitions, the total enstrophy can be expressed as:

N-1
——g<0>2{|c. dvZh+ ) Z{(G ¢pdvidvigrp).  (A-8)

i=1 j=i+1

The core smoothing functiofy used in this work is

3 3
fs(x) = s exP< |)5(|3 > (A-9)

Choosing a cylindrical coordinate system to perform the integration, with axial directi
aligned withe, we have

9
g(r) = 552", (A-10)
where

r = — (A'll)
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and
—+00 o0
1) =2v / / pexpl((z— )2+ p)%% — (248 + p)¥ dpdz  (A-12)
—o00 JO

The kernel of the above integral decays quicklytas oo, so thatZ can be accurately
evaluated by numerical integration over a sufficiently large compact €8thas Gaussian
shape fo < 1. However, forg > 1, it falls noticeably below a true Gaussian. Thiigs

modeled as
%_ 2
—| = , A-13
(c(&))] (A13)

i.e., as a Gaussian with variable widt¢). A good fit forc(¢) is

2
L(§) ~ — exp

0.5944 £<0.25
0.5944+ 0.0103&¢ — 0.252 — 0.0812% — 0.25° 0.25<& <1

c(E) = & S) A8 S § (A-14)
0.5645— 0.09406¢ — 1) 1<e<7
0.00014 E>T.

Using the above results and approximatiay, is evaluated as

r=_——exp|— AN A-15

9(r) 8753 P (c(r*)> ' (A-15)
( i )2
c(r)

(A-16)

Finally, we have

~ 8r 53 Z{|C| dV2}+Z Z {(Ci ¢ dvidyV;exp

i=1 j=i+1

with ¢ computed using Eq. (A-14).

A.2. Kinetic energy

Evaluation of the total kinetic energilf, is more complicated than calculation of the
total enstrophy because (a) expressiongfanvolve tensor manipulations, and (b) specia
attention is required for kernels with slow decay as co.

The total kinetic energy associated with a given particle distribution is found by insert
the desingularized Biot—Savart law,

1 o= (X —X) x ¢ ‘
ux) = Tam X KXP 5 (X = Xi), (A-17)

into the definition ofK,

E///%Mzd?’x. (A-18)
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Expressings and¢ in component form, we have

N N
53 ) [epi dVigp AV IXi, X)) = £pi dVigqj AViLpg(Xi. X1, (A-19)

2(471) =

whereks (x) = x5 (X) /x|,
J(Xi, X)) = // (Xp — Xpi)(Xp — Xp, )Ks (X — X)ks(x — Xj) d*x  (A-20)

qu(xi,xj)z// (Xp — Xpi)(Xg — Xq.))ks (X — X)ks (X — X)) d°k. (A-21)

Xp.i denotes thep component oK, p=1, 2, 3 and¢q j is theq component off;. Sum-
mation is understood whenever the indigeandq are repeated. Following the discussion
above,J and L depend on the distance;, betweenX; andX; only. To highlight this
dependence, we rewrittandL as

J(Xi, Xj) = ///(Xp_rizjep> <Xp+r;ep>k5<x—r;e>k5(x+ ri2je> d3x

(A-22)

L pgXi, Xj) =///(xp—%ep) (xq+%eq>k5( —% >k5<x+ %e) d3x,

(A-23)

wheree= (X; — X;j)/ri; as before.

Equation (A-19) can be simplified by manipulating the tensor expressions, and recas
the integrals in an appropriate cylindrical coordinate system. The velocity smoothing ker
corresponding td is « (r) =1 — exp(—r2) [15]. For this choice, we obtain

1 1 1 N-1 N
= > >Z{|§| c|v2}+(4 )ZZ D A -¢pAvidVihs(ip), (A-24)
i=1 j=i+1
where
hs(r) = gh (25) (A-25)
h(r) = hy(r) + ha(r) (A-26)

—+00 [ee]
hy(t) = 27 / /O (0 + (2= 1)+ 1)ka(p, Dka(p. 2 dpdz (A-27)

+00
ho(r) = 27'[/ / p(Z—r1)(zZ+1)ki(p, 2ka(p,2)dpdz (A-28)
—o0 JO
1 — exp[—(p? + (z—1)%)¥?/8%]
(p? + (z—1)?)32

1 — exp[—(p? + (z+1)%)¥?/8%]
(P2 + (Z+1)2)%2

ki(p,2) = (A-29)

ka(p,2) = (A-30)

(A-31)
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Numerical integration is performed fbg andh, separately, and curve fits are made o
those integrals as functions of The curve fits are combined to produce

A-32
2t _F r> 15, (A-32)

A+Br24+Cr®+Dr*+Er® 0<r <15
h(r) ~
r

whereA=8.395704 B = —5.629156C = 2.334138,D = 0.623281 E = —0.375890, and
F =0.945098. Consequently, the kinetic energy is computed using

1 hg(O) N ) ) N-1 N
= G| 2 S {IGPAVE+> 0 Y (&G ¢pdvidVihsrip) | (A-33)
i=1 i=1 j=i+1

with h from Eq. (A-32).

APPENDIX B. ENERGY SPECTRUM

The radial energy spectrum is calculated directly from the particle distribution, followi
the procedure outlined below. We take advantage of the classical results for homoger
flow where the velocity spectrum is simply the vorticity spectrum divideka{28], where
k is the magnitude of the wavenumber veckok = |k|. We begin by transforming the
numerical vorticity distribution,

N
w() =Y ¢ dV f(x—Xi), (B-1)

i=1

to Fourier space; we have

3
k) = <i> ///w(x) exp(—ik - x) d®x
27
1\3N _ _ ,
= (271> iZ:;Cid\/i exp(—lk-Xi)/// fs(ryexp(—ik - d. (B-2)
The conjugate of the vorticity amplitude is
1\3N
w*(k) = (E) ZCJ av, exp(+ik-Xj)/// f5(r) exp(+ik - r) dr. (B-3)
j=1
Thus, the vorticity norm is given by

1 6
EROE (Z) R(k) S(k), (B-4)

where

Rk) = /// fs(r) exp(—ik - r)d® /// fs(r) exp(+ik - r)d®r (B-5)
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