
Journal of Computational Physics152,305–345 (1999)

Article ID jcph.1999.6258, available online at http://www.idealibrary.com on

Dynamic LES of Colliding Vortex Rings
Using a 3D Vortex Method

John R. Mansfield,1 Omar M. Knio,2 and Charles Meneveau

Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, Maryland 21218-2686
E-mail: knio@jhu.edu

Received August 13, 1998; revised February 9, 1999

A Lagrangian particle method is used to simulate the collision of coaxial vortex
rings in three dimensions. The scheme combines a 3D, adaptive, viscous, vortex ele-
ment method with a dynamic eddy viscosity model of the subfilter scale stresses. The
vortex method is based on discretization of the vorticity field into Lagrangian vortex
elements and transport of the elements along particle trajectories. The computations
incorporate a mesh redistribution algorithm which creates new elements in regions
of high strain and locally redistributes the vorticity field into a smaller number of
elements when particles tend to cluster. The subfilter scale vorticity model consists of
approximating the effect of unresolved vorticity stresses using a gradient–diffusion
eddy viscosity model, following the development in Part I (J. R. Mansfield, O. M.
Knio, and C. Meneveau,J. Comput. Phys.145, 693 (1998)). Dynamic implemen-
tation of the model relies on determining model coefficients through test-filtering
the Lagrangian particle representation of the filtered vorticity field. Computations
of ring collisions show that, combined, the mesh redistribution scheme and subfil-
ter scale model result in a robust scheme that can be extended into the late stages
of evolution of the flow. In addition, it is shown that the Lagrangian LES scheme
captures several experimentally observed features of the ring collisions, including
turbulent breakdown into small-scale structures and the generation of small-scale
radially propagating vortex rings. c© 1999 Academic Press

Key Words:vortex methods; redistribution scheme; Lagrangian simulation; dy-
namic LES.

1. INTRODUCTION

Particle methods are designed for simulation of high-Reynolds-number flows with con-
centrated vorticity. They are generally based on discretization of the vorticity field into
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Lagrangian elements and transport of these elements along particle trajectories. The advan-
tages of this approach stem from the Lagrangian discretization which naturally concentrates
computational elements into regions of high vorticity, and from the Lagrangian transport
which minimizes numerical diffusion.

Due to their natural ability to capture inviscid dynamics of concentrated energetic ed-
dies, vortex methods appear to provide a promising approach to large-eddy-simulation of
turbulent flows. The original attempts at Lagrangian LES may be traced to Chorin’s hairpin
removal algorithms [1–3]. Essentially, these schemes combine a filament-based method
with a local mesh redistribution algorithm that removes the filaments’ small scales or “hair-
pins.” Hairpin removal schemes have been used in various applications, including boundary
layers [4], vortex breakdown [5], and vortex reconnection [6].

In their simplest form, hairpin removal schemes rely on the redistribution scheme to
filter out the small scales but maintain the same governing equation for the large scales.
Thus, the effect of the unresolved scales is assumed to be accounted for by the hairpin
removal process. Recently proposed extensions of the hairpin removal scheme are based on
renormalized equations of motion for the large scales [7, 8], including a scale-dependent
“dielectric constant” which accounts for the missing scales in the Biot–Savart law [9].

In this paper, we explore a different approach that is applicable to particle-based method
as opposed to filament schemes. Specifically, we incorporate the dynamic eddy diffusivity
model introduced in our previous effort [10] into a 3D Lagrangian particle scheme. The
model accounts for the effect of the subfilter scale (SFS) vorticity stresses on the motion of
the resolved scales. The properties of the model were analyzed in [10] in light ofa priori
tests using direct numerical simulations of isotropic turbulence. In particular, these tests
showed that the eddy diffusivity model exhibits fair correlation with the SFS torque due to
vortex transport, but poor correlation with the SFS torque due to vortex stretching and tilting.
Despite this weakness, the tests indicated that the eddy viscosity model for the vorticity
transport equation is potentially more realistic than its primitive variable counterpart; a
similar conclusion was reached by Winckelmanset al. [11]. Numerical experiments were
also conducted in [10] in order to explore a particle discretization of the dynamic SFS
model. Comparison with spectral collocation results showed that when adequate resolution
is provided the particle discretization yields reasonable predictions of both the SFS torques
and the dynamic model constant.

Motivated by these results, the present effort focuses on the implementation of the dy-
namic eddy diffusivity model proposed in [10] in a Lagrangian particle scheme. As outlined
in Section 2, the latter is based on discretization of the vorticity field into smooth overlapping
vortex elements which move with the local resolved velocity vector. The vorticity carried
by the elements changes according to stretching by the resolved strain field, molecular
diffusion and the modeled SFS torques. The numerical scheme incorporates a local redistri-
bution algorithm which combines a splitting scheme and a merging scheme. The splitting
scheme introduces additional particles in regions of high strain, while the merging scheme
eliminates particles in regions where they tend to cluster. Thus, the particle redistribution
algorithm mimics the action of hairpin removal in filament-based computations.

In Section 3, the scheme is applied to simulate the collision of coaxial vortex rings in
three dimensions. The computational setup resembles the experimental conditions of Lim
and Nickels [12], who provide striking dye visualizations of these collisions. In particular,
the experimental findings in [12] show that the collision of the two rings results, following
a complex cancellation and reconnection process, in the generation of ringlets propagating
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in the radial direction, away from the center of the collision. However, the experiments also
indicate that in some collision events the rings break down into a cloud of turbulence without
generating ringlets. This variability and strong dependence on the initial conditions, as well
as the development of instabilities, provide a difficult challenge for the computations. Thus,
the simulations are used to analyze, qualitatively, possible causes behind the variability
between different collision events.

Irrespective of the outcome of the collision, the violent nature of the interaction between
the colliding rings provides a stringent test for the computations. The latter show that the
present combination of particle redistribution and SFS dynamic model results in a robust
scheme that can capture complex flow dynamics with a reasonable number of elements.
The present results and conclusions are summarized in Section 4, and are contrasted with
previous hairpin removal experiences.

2. FORMULATION AND NUMERICAL SCHEMES

2.1. Formulation

The present LES scheme is based on the filtered vorticity transport equation [13],

∂ω̃i

∂t
+ ũ j

∂ω̃i

∂xj
= ω̃ j

∂ũi

∂xj
+ ν∇2ω̃i − ∂Ri j

∂xj
, (1)

where

Ri j ≡ (ω̃i u j − ω̃i ũ j )− (ũiω j − ũi ω̃ j ) (2)

is the subfilter-scale (SFS) vorticity stress, which accounts for the effect of unresolved
velocity and vorticity fluctuations. Tildes are used to denote spatially filtered quantities. In
order to close the filtered vorticity transport equation, one must provide a model for the
vorticity stress,R, or alternatively for its divergence,∂Ri j /∂xj . Following our efforts in
[10], we focus on the eddy diffusivity model [11, 13]

∇ · R ' g ≡ −∇ · (νT∇ω̃), (3)

where

νT = C2
r 1

2|S̃| (4)

is the eddy diffusivity. In Eq. (4),1 is the filter size,|S̃| ≡
√

2S̃mnS̃mn is the modulus of
the filtered strain-rate tensor, andCr is a model constant. As discussed below, the filter
size1 is related to the core size of the Lagrangian vortex elements used to represent the
vorticity field, while the model constant is determined dynamically in the calculations based
on multiple filtering operations.

2.2. Numerical Scheme

The present Lagrangian LES scheme is based on a three-dimensional vortex element
method. The method is based on discretization of the vorticity field into desingularized
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elements, according to [14, 15],

ωN(x, t) =
N∑

i=1

ζ i (t) dVi fδ(x− Xi (t)), (5)

whereN is the total number of elements,Xi , ζ i , anddVi respectively denote the position,
strength and volume of thei th element,

fδ(x) ≡ 1

δ3
f

( |x|
δ

)
(6)

is a spherical rapidly decaying core function, andδ is the core radius. The vortex elements
are assumed to have overlapping cores and the smoothing functionf is assumed to satisfy
some moment conditions [15, 16] which govern the convergence of the scheme.

For an unbounded domain with no internal boundaries, where the fluid at∞ is at rest, the
velocity field induced by the above vorticity distribution (5) is given by the desingularized
Biot–Savart law [15],

u(x) = − 1

4π

N∑
i=1

(x− Xi )× ζ i

|x− Xi |3 dVi κδ(x− Xi ), (7)

where

κδ(x) ≡ κ
( |x|
δ

)
; κ(r ) = 4π

∫ r

0
ξ2 f (ξ) dξ (8)

is the velocity smoothing kernel corresponding tof . In all of the computations below, we
rely on the third-order Gaussian core function [17]

f (r ) = 3

4π
exp(−r 3) (9)

with corresponding velocity kernel

κ(r ) = 1− exp(−r 3). (10)

This choice leads to an essentially second-order accurate discretization [15].
Using the particle representation of the velocity (7) and vorticity (5), we transform the

original problem into a system of coupled evolution equations for the particle positions and
strengths. We have

dXi

dt
= u(Xi ) (11)

dζ i

dt
= ζ i · ∇u(Xi )+ D[ν, ζ](Xi )+ D[νT, ζ](Xi ) (12)

Here,D[ν, ζ](Xi )denotes a particle representation of the diffusion term, whileD[νT, ζ](Xi )

is a particle representation of the SFS model. Below, we outline the evaluation of the SFS
model but for brevity omit discussion of the diffusion term. However, it is first necessary
to recall various filtering operations originally introduced in [10].
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2.3. Filtering

The present approach is based on associating the resolution limit with the core radius,
δ, and considering the vorticity field in (5) to be “particle filtered.” We standardize the
definition of size by relating the core size,δ, to the width,1, of an equivalent box filter. We
introduce the scaling coefficientc ≡ 1/δ, and define the (standardized) particle filter [10]:

G1(x) ≡ f1/c(x) = 3

4π

(
c

1

)3

exp

[
−
(

c|x|
1

)3
]
. (13)

The constantc is determined by requiring that the particle filterG1 have the same charac-
teristic size (i.e., the same energy content

∫ |Ĝ1(k)|2d3k) as the spherical box filter,

B1(x) =
{

6
π13 if |x| ≤ 1/2
0 otherwise.

(14)

This requirement results in the relationship1= 2.88243δ, i.e.,c= 2.88243, for the third-
order Gaussian.

In addition to the above particle filter, we also introduce a test filter which is assumed to
have the same shape as the particle filter but larger width. The test filter is denoted by an
overbar and, in the framework of the particle representation, is defined by

q̄(x) =
∑N

i=1 q(Xi ) exp[−(c|x− Xi |/1′)3]∑N
i=1 exp[−(c|x− Xi |/1′)3]

, (15)

whereq is the quantity being test filtered and1′ is the width of the test filter.

2.4. Evaluation of Cr and SFS model

In order to determine the model constant, the dynamic procedure introduced in Ref. [10]
is implemented. (The dynamic scheme in [10] is an adaptation of the dynamic proce-
dure introduced in [18] for the Navier–Stokes equations.) Specifically, it is shown that the
“particle-averaged” model constant can be dynamically approximated using [10],

C2
r =

∑N
i=1 pi · qi dVi∑N
i=1 qi · qi dVi

, (16)

wherepi ≡ p(Xi ), qi ≡ q(Xi ),

p= d̃ω̃

dt
−

¯̃d ¯̃ω

dt
, (17)

q= 12∇ · (|S̃|∇ω̃)−1′2∇ · (| ¯̃S|∇ ¯̃ω), (18)

d̃/dt represents the time rate of change for an observer moving atũ, while ¯̃d/dt repre-
sents the time rate of change for an observer moving at¯̃u. In the calculations, the filtered
Lagrangian derivatives are approximated using backward differences; we use [19][

d̃ω̃

dt

]
(Xi , t) ≈ ω̃(Xi (t), t)− ω̃(Xi (t −1t), t −1t)

1t
(19)
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and [ ¯̃d ¯̃ω

dt

]
(Xi , t) ≈

¯̃ω(Xi (t), t)− ¯̃ω(Xi (t)−1t ¯̃ui (t), t −1t)

1t
(20)

In order to estimateq, we rely on the Lagrangian expressions developed by Degond
and Mas-Gallic [20], who show that for isotropic spatially varying diffusivity the gradient
diffusion operatorD[b, f ]≡∇ · (b(x)∇ f (x)) can be approximated as

D[b, f ](Xk) ≈ 1

δ2

∑
l

wlηδ(Xk − Xl )µ(Xl ,Xk)( fl − fk), (21)

whereXl , wl , and fl are the particle positions, volumes and strengths in the Lagrangian
representation off , ηδ(x) = δ−3η(|x|/δ) is a rapidly decaying smoothing function, andµ
is a symmetric kernel which satisfies

µ(x, y) = µ(y, x) and µ(x, x) = b(x). (22)

We associateµ with the geometric mean diffusivity; i.e., we set [10]

µ(x, y) =
√

b(x)b(y). (23)

Meanwhile, we relateη to the gradient of the core smoothing function using [20]:

η(r ) ≡ g(r ) = −2

r

d f

dr
. (24)

Using (21), the diffusion term∇ · (|S̃|∇ω̃) is approximated as

∇ · (|S̃|∇ω̃)i ≈ 1

δ2

N∑
j=1

√
|S̃(Xi )||S̃(X j )|(ω̃(X j )− ω̃(Xi )) dVj gδ(X j − Xi ), (25)

where the filtered strain and vorticity values are obtained from the filtered velocity gradient,
∇ũ. The latter is obtained by analytically differentiating the desingularized Biot–Savart law
and evaluating the resulting expression [21]. Equation (15) is then used to compute a test
filtered version of the velocity gradient, which naturally yields the test filtered vorticity¯̃ω
and strain¯̃S.

The grid-filtered diffusion term is then test filtered according to

∇ · (|S̃|∇ω̃)(Xi ) =
∑N

j=1∇ · (|S̃|∇ω̃)(X j ) exp[−(c|Xi − X j |/1′)3]∑N
j=1 exp[−(c|Xi − X j |/1′)3]

. (26)

A similar approach is adopted for the second diffusion in Eq. (18), which involves diffusion
of the test filtered vorticity. Specifically, Eq. (21) is once again used in conjunction with the
test filtered vorticity¯̃ω and strain¯̃S; this yields

∇ · (| ¯̃S|∇ ¯̃ω)(Xi ) ≈ 1

δ2

N∑
j=1

√
| ¯̃S(Xi )|| ¯̃S(X j )|( ¯̃ω(X j )− ¯̃ω(Xi )) dVj gδ(X j − Xi ). (27)
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The results of Eqs. (26) and (27) are then substituted into Eq. (18), which results in the
necessary estimates forq. The accuracy of the approximations in Eqs. (25)–(27) was tested
in detail in [10] against spectral DNS of isotropic turbulence. The tests in [10] show that
when the particle representation is sufficiently resolved the predictions of the particle rep-
resentation are in good agreement with spectral results.

Once the differencesp andq are evaluated for all the Lagrangian particles, the model
constant is evaluated from Eq. (16). A priori tests in [10] show that this approach yields
realistic values ofCr . Note, however, that the discrete sum in (16) may yield a negative
quantity. In this situation, the eddy viscosity is simply set to zero, in order to avoid a negative
value. Accordingly, the eddy diffusivity used in the computations is actually given by

νT = max
(
C2

r 1
2, 0
)|S̃|. (28)

Also note that the integral approximation in (21) is also used to evaluate the SFS vorticity
source term in Eq. (12); this yields

D[νT, ζ](Xi )

= max
(
C2

r 1
2|S̃|, 0) 1

δ2

N∑
j=1

√
|S̃(Xi )||S̃(X j )|(ω̃(X j )− ω̃(Xi )) dVj gδ(X j − Xi ). (29)

This completes the description of the particle approximation.

2.5. Local Mesh Refinement

The computations discussed below incorporate a local mesh refinement scheme which
combines particle-splitting and particle-merging algorithms. The particle-splitting algo-
rithm essentially amounts to locally distributing the vorticity into a larger number of particles
whenever these particles are subjected to large strain. It aims at ensuring that neighboring
particles have overlapping cores and consequently that an adequate particle representation
is maintained despite severe deformation of the flow map. Prior computations (e.g., [13, 21,
22]) indicate that such local refinement schemes are effective in avoiding rapid deterioration
of the accuracy of the calculations associated with loss of core overlap. In complex flows,
however, mesh refinement may lead to excessive growth in the number of computational
elements and in CPU time. The particle-merging algorithm is introduced in order to avoid
such a phenomenon. It essentially consists of reducing the number of particles in regions
where the particles tend to cluster.

The particle-splitting algorithm used in the present work is motivated by earlier expe-
riences with filament-based algorithms [1, 2, 22], which generally base splitting criteria
on the length of individual segments. As mentioned above, a particle-based representation
which does not explicitly track the relative positions of the computational elements is used
in the present work; thus, a new mesh refinement scheme is introduced. The scheme mimics
the action of segment splitting by assigning to each particle three vectorsδχk(t), k= 1, 2, 3,
whose evolution reflects the local deformation. These vectors are regarded as infinitesimal
material segments originating at the center of each particle. Initially, the vectors are mutu-
ally orthogonal, have unit length, and are aligned with the basis vectorsek, k= 1, 2, 3, of a
right-handed Cartesian coordinate system in which the motion is described. We thus have
δχk(0)= ek, k= 1, 2, 3. As the particles are transported by the flow, the evolution of the
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corresponding elementary vectors is governed by

D

Dt
δχk

i = δχk
i · ∇u(Xi ), k = 1, 2, 3; (30)

i.e., the “normalized” material segments stretch and tilt according to the local strain field.
Based on the evolution ofδχk

i , a Lagrangian strain tensorE is formed using

E ≡ 1

2
{U+ UT + UUT}, (31)

where

U ≡
[
δχ1(t)− δχ1(0)

|δχ1(0)|
∣∣∣∣δχ2(t)− δχ2(0)

|δχ2(0)|
∣∣∣∣δχ3(t)− δχ3(0)

|δχ3(0)|
]

(32)

and the superscript T denotes the transpose. The eigenvectors ofE are the principal strain
axes.

The splitting of vortex particles is directly based on the eigenvalues ofE. Specifically,
splitting is performed when the largest eigenvalue exceeds3

2, i.e., when the particle has
stretched to twice its original length along the corresponding eigenvector. This can be
illustrated with the simple example of a particle being stretched along thex-axis by a
velocity field with constant velocity gradient,

∇u =
1 0 0

0 −1 0
0 0 0

 . (33)

Following Eq. (32), the material segments are given by

δχ1(t) = [ et 0 0]T (34)

δχ2(t) = [ 0 e−t 0]T (35)

δχ3(t) = [ 0 0 1]T. (36)

At time t = loge 2, the vectorδχ1 has twice its original length, and the tensorU is

U =

2− 1 0 0

0 1
2 − 1 0

0 0 1− 1

 =
1 0 0

0 − 1
2 0

0 0 0

 . (37)

The strain tensorE is then

E =


3
2 0 0

0 − 3
8 0

0 0 0

 . (38)

The eigenvalues ofE at this time are 3/2, 0, and−3/8. The eigenvector corresponding
to the eigenvalue 3/2 is e1, the direction in which the particle was stretched to twice its
original length. In general, rotation and stretching lead to more involved expressions but
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the above observation still holds; i.e., if an eigenvalue ofE reaches 3/2, then the particle
has “stretched” to twice its original length along the corresponding eigenvector.

Once the leading eigenvalue ofE exceeds 3/2 the particle is split into two daughter
particles. They are placed a distanceh0/2 away from their parent, along the principal strain
axis. h0 is the Cartesian grid size used to discretize the vorticity field at the start of the
calculations. Each daughter receives half the volume of their mother and the same vortex
strength. The material segment vectors on each daughter particle are reset to the orthonormal
configuration.

In complex flows, such as the ring collisions of the following section, particle splitting
leads to rapid and excessive growth in the number of particles. To control this a particle-
merging scheme is used. Introduction of the merging scheme is motivated by recent hairpin
(or scale) removal experiences in filament-based computations [1–6, 8], though the present
procedure appears as a simplified version of filament remeshing. In the computations below,
two particles are merged into one whenever the separation distance falls below a threshold
β. (In the computations, we setβ = h0/2.) If particlesi and j satisfy this criterion, they are
replaced with a single particle whose position, volume, and strength are given by

Xi j =
Xi |ζ i | dVi + X j |ζ j | dVj

|ζ i | dVi + |ζ j | dVj
(39)

dVi j = dVi + dVj

ζ i j =
ζ i dVi + ζ j dVj

dVi + dVj
, (40)

respectively. It is easy to verify that the volume of vorticity is unaffected by merging or
splitting, but that neither the splitting or the merging procedure conserves enstrophy or
kinetic energy.

Implementation of the merging scheme necessitates an extension of the splitting scheme,
since elementary segmentsδχk, k= 1, 2, 3, for the merged particles must be defined. To
this end, we combine the segmentsδχi andδχ j of the two consolidating particlesi and
j . First, the three vectors corresponding to the smaller particle are scaled by the factor
dVj /dVi , wheredVi > dVj . Second, the largest of the six vectors is selected as the major
semiaxis,vA, of an ellipsoid, with the unit vector in this direction beingeA. Third, two
mutually orthogonal unit vectors,eB andeC, are constructed in the plane perpendicular to
the major semiaxis. The semiminor semiaxes of the ellipsoid,vB andvC, are taken to be in
the directions ofeB andeC. Fourth, the length ofvB is found as the shortest length such that(

δχk · eA

|vA|

)2

+
(
δχk · eB

|vB|

)2

+
(
δχk · eC

|vB|

)2

≤ 1, k = 1, . . . ,6. (41)

In other words, all six segments fit inside an ellipsoid whose major semiaxis has length|vA|
and whose cross-section through its center, perpendicular to the major axis, is a circle with
radius|vB|. Last, the length ofvC is calculated as the shortest length such that(

δχk · eA

|vA|

)2

+
(
δχk · eB

|vB|

)2

+
(
δχk · eC

|vC|

)2

≤ 1, k = 1, . . . ,6. (42)

The material segments of the consolidated particle,δχ1
i j , δχ

2
i j , andδχ3

i j , are taken to be the
semiaxes of the ellipsoid,vA, vB, andvC, respectively.
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2.6. Parallel Implementation

Simulations using the present scheme were performed on the CRAY T3D at the Pittsburgh
Supercomputer Center. The methodology used to construct and optimize parallel codes has
been directly adapted from [23]. Its essential features consist in distributing the particle
data among all available processors. The particle data are organized into arrays which
are distributed among all the processors following a cyclic distribution scheme; machine-
specific directives are used for this purpose. A duplicate copy of thelocaldata is also created
at the start of the parallel computations and placed in scratch arrays. Scratch arrays for
partial convolution sums are also defined. During the parallel computations, each processor
computes binary interactions using the particle data that is resident on its memory. Once
the local interactions are computed, each processor communicates to its neighbor the data
in the scratch arrays. The computation of local interactions and the communication step
define an elementary iteration, which is repeated until the particle data has visited all the
processors. At this stage, the necessary convolutions are computed based on the (local)
partial sum results, and numerical integration of the discrete equation is performed locally
using the resident data.

In addition to providing a detailed description of the parallel algorithm above, Ref. [23]
also discusses an extensive performance study. In particular, it is shown that the above
approach results in efficient algorithms with excellent scalability properties. Typically, the
computations below are performed on a 64-processor partition, with a total number of
elements ranging from 4× 103 to 105. High (>0.9) parallel efficiency is maintained as long
as the number of particles per processor is larger than about 100. At these conditions, the
performance of the calculations is around 30 MFlops per processor.

3. RESULTS

The numerical scheme described in the previous section is applied to LES of isolated
and colliding vortex rings. In the case of the isolated vortex ring, the scheme is used to
compute the self-induced propagation of the ring as well as the growth of 3D azimuthal
perturbations [22, 24]. Meanwhile, simulations of ring collisions are extended into late
stages, where severe deformation of the vorticity field, including local cancellation and
reconnection, is expected to occur [12]. We start with an illustration of the essential flow
features (3.1) and then examine the behavior of the dynamic SFS model (3.2). We conclude
(Section 3.3) with a discussion of the evolution of the enstrophy and kinetic energy, together
with a brief examination of energy spectra.

3.1. Basic Flow Features

The evolution of the flow is illustrated by plotting at selected time instants the positions
of the Lagrangian particles and/or surfaces of constant enstrophy. The constant-enstrophy
surfaces are shown in 3D perspective views while the particle positions are presented as 2D
scatter plots ofprojectedparticle positions. We generate projections on a streamwise plane
(x–y) and on an azimuthal plane (z–y). The convention used is that the projection planes
are identified by the corresponding normal vectors and that the axis of the vortex ring(s)
coincides with thez-axis. When generating projections on the streamwisex–y plane, we
mark the projected locations ofall the Lagrangian particles. On the other hand, projections
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TABLE I

Ring Parameters

σ/R Core to radius ratio 0.275
Re0 0/ν 2,200
ReD V D/ν 1,000
ε/R Normalized perturbation amplitude 0.02
Nw Wavenumber of perturbation 12
h0/R Normalized grid size 0.01

Note. Ris the ring radius,σ is the core radius,0 is the circulation,V is
the self-induced propagation velocity,ν is the kinematic viscosity,ε is the
perturbation amplitude,Nw is the number of azimuthal bending waves, and
h0 is the size of the Cartesian grid used for the initial discretization.

on thez–y plane only depict the projected location ofneighboringparticles, namely those
lying within a distanceδ from the plane of the projection. As can be appreciated from the
results below, the streamwise projections generated in this fashion gives an illustration of
secondary motion, whilez–y projections effectively depict an azimuthal slice of the vortex
core.

Isolated Vortex Ring. The physical parameters characterizing the vortex ring are sum-
marized in Table I. We start with an axisymmetric vortex ring with core to radius ra-
tio σ/R= 0.275. The Reynolds number based on the ring circulation is Re0 = 2,200,
while the Reynolds number based on ring diameter and self-induced translation velocity is
ReD = 1,000. The initial distribution of azimuthal vorticity in the core of the ring is shown
in Fig. 1. Prior to the calculations, the ring vorticity is perturbed in the azimuthal direction
by displacing the axis of the vortex core using a sinewave perturbation [22]. The bending
wave perturbation is specified in terms of its amplitude,ε, and wavenumber,Nw. As shown
in Table I, a perturbation withε/R= 0.02 andNw= 12 is selected. For the present ring
parameters [22], this value ofNw corresponds to the most amplified mode of the Widnall
instability [24]. The vorticity distribution of the perturbed vortex ring is discretized onto
Lagrangian particles that are initially distributed on a uniform Cartesian mesh of cell size,
h0. Vortex particles whose strength falls below 1% of the peak particle strength are omitted.
For the present ring, there are 4155 particles at the start of the calculation.

FIG. 1. Solid line: initial azimuthal vorticity profile in the core of the ring. The dotted line shows the core
smoothing function.r is the radial distance in the azimuthal plane, measured from the center of the core.
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FIG. 2. Particle locations for single translating ring with turbulence model. Plotted on the left are projections
on thez–y plane of Lagrangian particles lying in the slice−1≤ x≤1. The right column shows the projection
of all the particles on thex–y plane. The concentric circles in the lower-right corner show the size of the particle
filter,1, and the test filter, 21.

The evolution of the perturbed vortex ring is illustrated in Fig. 2, which shows the distri-
bution of vortex particles at selected times, and in Fig. 3 which depicts three-dimensional
perspective views of surfaces of constant vorticity. The vorticity surfaces are plotted using
the same scale and the same vorticity level and the particle plots are generated using the
same scale. The initial four-sector symmetry seen in the particle plots is due to the initial
placement on a Cartesian grid. This symmetry is not noticeable in the vorticity field.

Figure 2 shows that during the course of the simulation the vortex ring travels, from
right to left, a distance of about two ring diameters. As the ring propagates, the volume
occupied by vortex particles expands to include the space between the core and the ring
axis. Meanwhile, the ring diameter does not appear to change. Figure 2 also shows that
some particles are left in the wake of the ring. These particles contain little vorticity and the
wake appears to have little effect on the dynamics of the vortex cores. This was shown by
repeating some of the simulations with particles in the wake removed. The removal made
essentially no difference in the evolution of the particles within the vortex cores.
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FIG. 2—Continued

Figure 3 shows that little change in the shape of the isolated vortex ring occurs during
the simulation. In particular, the thickness of the ring, as perceived from the surface plots,
appears to remain unchanged. The growth of the perturbation is clearly evident but, as
mentioned earlier, the deformation of the ring remains small. This suggests that within the
duration of the computation the vortex ring remains laminar; this is further examined below
in Section 3.2 in light of dynamic computations of turbulent eddy viscosity.

Colliding Vortex Rings. The initial setup in colliding ring simulations consists of two
coaxial vortex rings initially placed “upstream” and “downstream” of the planez= 0. The
centroids of the vortex rings are initially at a distance of one ring diameter from the plane of
collision. We focus on collisions of initially perturbed vortex rings. Without perturbation,
transition to turbulence was not observed as the colliding rings approach each other, slow
down and stretch while maintaining perfect axial symmetry. These simulations are thus
omitted.

The vortex ring lying in the half-spacez< 0 is an identical copy of the perturbed vortex
ring described above. The second vortex ring is an “image” of the first which is spec-
ified in terms of a mapping. Two mappings are considered in the present study. In the
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FIG. 3. Surface of constant vorticity magnitude (‖ω‖R2/0= 1.82) for an isolated vortex ring with turbulence
model.

first mapping, the second ring is generated by reflecting the particles of the first ring with
respect to the planez= 0. Thus, the particles positions are mapped in Cartesian coordi-
nates according to(x, y, z)→ (x, y,−z). Meanwhile, the particle strengths are mapped
by (ζx, ζy, ζz)→ (−ζx,−ζy, ζz). Note that for this mapping the azimuthal sinewave per-
turbation on both rings are in phase. Thus, as the rings approach each other the crest of



LES OF COLLIDING VORTEX RINGS 319

FIG. 3—Continued

these waves tend to collide first, and the arrangement is therefore referred to as crest-to-
crest alignment or collision. On the other hand, a second mapping is implemented so that
the sinewaves are aligned crest-to-trough, i.e., the perturbations of the rings are out of
phase. In this case, the particle positions and strengths are rotated in the azimuthal direction
by an angleπ/Nw. This mapping twists one of the rings half a perturbation wavelength.
While other twisting angles were considered in the calculations, we restrict our attention
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to the cases with crest-to-crest and crest-to-trough alignments and perform the simula-
tions both with and without SFS model. Thus, four cases are contrasted in the discussion
below.

We start with results obtained for a crest-to-crest collision without turbulence model
and plot in Fig. 4 the particle locations at selected time instants. In the early stages of the
simulation, the rings propagate under their own self-induced motion, and particles with
low vorticity are left in the wakes of the rings. As the rings approach each other, their
translation velocity decreases while their radii increase. As discussed later, this also leads
to significant increase in the enstrophy. Byt 0/R2= 17.6, the two rings can no longer
be distinguished as they have completely merged into a single doughnut-shaped structure.
This structure continues to extend in the radial direction, leaving a web of particles around
the centers. Like the particles left in the wakes of the approaching rings, these particles
carry little vorticity and have consequently little effect on the dynamics of the concentrated
cores. This was tested by repeating some simulations with the particles in the wake of
the rings removed. Figure 4 shows that att 0/R2= 19.8 the particles have clumped into
12 groups spaced azimuthally in correspondence with the initial perturbation of the rings.
The clumping is also evident in the last frame (t 0/R2= 22), which also shows that irreg-
ularities appear in the positions of the particles.

In the early stages of the simulation the rings are well separated and the interaction is
weak. Thus, results for the various cases are quite similar, and differences are only observed
at later stages. Thus, in discussing the results of the other three cases we omit the early stages
of approach towards the plane of collision and focus exclusively on the later stages.

Figure 5 shows distributions of the Lagrangian particles at selected times for the simula-
tion of crest-to-crest vortex ring collision with turbulence model. The results show that the
distribution of particles during the simulation is qualitatively similar to that observed in the
simulation without turbulence model. In particular, the stretching of the vortex rings, their
merger and the generation of 12 distinct particle clusters are observed. However, the results
also indicate that when the turbulence model is included this process occurs at a slower
rate. This can be most easily appreciated by comparing in Figs. 4 and 5 the stretching of
the ring radii at corresponding time instants.

Crest-to-trough vortex ring collisions are illustrated in Fig. 6, which shows particle dis-
tributions obtained from a simulation without turbulence model, and in Fig. 7, which shows
similar distributions for a simulation with turbulence model. The results reveal several dif-
ferences from the crest-to-crest collisions. In particular, the particle distributions in the
crest-to-trough collision have a larger extent in thez-direction than in the crest-to-crest col-
lision. Another distinctive feature of the crest-to-trough alignment is that in the late stages
of the collision the particles distributions exhibit 24 distinct clumps; in the crest-to-crest
collisions 12 clumps are instead obtained (Figs. 4 and 5). Thus, the initial alignment of the
perturbation appears to have a significant effect on the evolution of the flow.

Meanwhile, comparison of Figs. 6 and 7 indicates that the particle distributions in crest-
to-trough collisions simulated with and without turbulence model are similar, at least qual-
itatively. Close examination of the results suggests that, as observed for the crest-to-crest
collisions above, stretching and merger of the rings during collision occur at a slower rate
when the turbulence model is active. One can also observe that when the turbulence model
is deactivated the clumps of particles are no longer distinct in the final stages of the collision
(Fig. 6); in fact, the particle distribution at the end of the simulation shows organization
at different scales, in a manner suggestive of turbulence. Meanwhile, when the turbulence
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model is included (Fig. 7) the particle distribution appears to be more organized than that
obtained with the model omitted.

Additional insight into the evolution of the flow is gained by generating three-dimensional
perspective views of a constant enstrophy surface. Results are shown in Fig. 8 for crest-to-
crest collision without turbulence model, in Fig. 9 for crest-to-crest collision with turbulence
model, in Fig. 10 for crest-to-trough collision without turbulence model, and in Fig. 11
for crest-to-trough collision with turbulence model. Instantaneous views are generated at
the same times at which the corresponding particle distributions are plotted in Figs. 4–7
respectively.

Figures 8–11 provide another illustration of the various stages of the head-on collision
of the vortex rings. In particular, the initial “quasi-steady” stages of the motion, the de-
celeration and the increase in ring diameter, and the subsequent merger of the rings are
clearly depicted. In addition, the surface plots also enable us to further characterize the late
stages of the collision. In particular, the results show that the clumping of particles observed
earlier is in fact associated with vortex reconnection, which leads to the formation of small-
scale structures. These phenomena occur differently in the various cases and enable us to
distinguish between them. Specifically, in the crest-to-crest collision without turbulence
model (Fig. 8), early signs of reconnection can be observed att 0/R2= 19.8. By the end
of the simulation,t 0/R2= 22, the perspective view shows the presence of distinct vortical
structures, which correspond to the 12 clumps of particles seen in Fig. 4. When the turbu-
lence model is included, Fig. 9 shows that reconnection occurs at later time. Att 0/R2= 22,
the colliding rings can still be distinguished, although early signs of reconnection can be
detected. Byt 0/R2= 24.2, however, distinct reconnected vortical structures have formed,
and the original rings no longer exist.

As shown in Figs. 10 and 11 the details of the reconnection are significantly different when
the initial perturbations of the rings are out of phase. In this case, the perturbations amplify
in a sinuous fashion during the collision, in a manner similar to the way the bends in a river
grow. Each half-bend of the rings corresponds to one of the 24 clumps of particles seen in
the corresponding particle distribution shown in Fig. 10. Att 0/R2= 22 the original rings
have totally disappeared, leaving a disorderly collection of smaller-scale vortical structures.
On the other hand, when the turbulence model is included the growth of the perturbations,
though still significant, occurs at a slower rate. Significant decay appears to take place
before the final stages, where only weak and disorganized structures remain.

We finally note that in all cases considered the head-on collision of the rings naturally
leads to the generation of small-scale flow structures and consequently strains the resolution
of the computations. The generation of small-scale structure is affected by a variety of
phenomena, including the radial stretching of the large-eddy cores, the amplification of 3D
instabilities and vortex merger and reconnection. The effect of small-scale structures on the
behavior of the solution, and the role of the turbulence model are further discussed below.

3.2. Dynamic Model Coefficient and Eddy Viscosity

Figure 12 shows instantaneous values of the dynamic model coefficient,C2
r . Plotted are

curves for the isolated vortex rings, and for colliding vortex rings with crest-to-crest and
crest-to-trough alignments. As mentioned above, each of the colliding ring calculations
was performed both with and without turbulence model. When the turbulence model is
deactivated, however, estimates of the dynamic model coefficient and the eddy viscosity are
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FIG. 4. Particle locations for crest-to-crest collision without turbulence model. Plotted on the left are pro-
jections on thez–y plane of Lagrangian particles lying in the slice−1≤ x≤1. The right column shows the
projection of all the particles on thex–y plane. The concentric circles in the lower-right corner show the size of
the particle filter,1, and the test filter, 21.
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FIG. 4—Continued
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FIG. 5. Particle locations for crest-to-crest collision with turbulence model. The plots are generated as in
Fig. 4.
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FIG. 6. Particle locations for crest-to-trough collision without turbulence model. The plots are generated as
in Fig. 4.
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FIG. 7. Particle locations for crest-to-trough collision with turbulence model. The plots are generated as in
Fig. 4.
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nonetheless obtained, but are not used while updating the particle strengths. These estimates
are also reported in Fig. 12.

In all cases considered, Fig. 12 shows thatCr is close to 0 at the start of the calculation. In
the early stages, the computed estimate ofC2

r first becomes negative, reaching a minimum
aroundt 0/R2= 4.5. (Recall that when the estimate ofC2

r is negativeνT is set to 0, as
indicated in Eq. (28).) At later times, the curves forC2

r increase and positive values are
reached aroundt 0/R2= 7. Soon thereafter, the behavior of the curve for the isolated ring
becomes different from those of the colliding ring calculations. For the single ring,Cr

remains close to zero, whereas for the colliding rings, the coefficient increases in value.
For the crest-to-crest alignmentC2

r levels off, att 0/R2= 13, around 0.004, less than a
third of the theoretical value for homogeneous, isotropic turbulence. The plateau lasts until
t 0/R2= 16.5 and then drops to zero. Simulations of the crest-to-trough collision also
show a plateau in the value ofC2

r , but it lasts a shorter time, and after the plateau the
coefficient continues to rise. It reaches a peak aroundt 0/R2= 17 of about 0.008, half
the theoretical value for homogeneous, isotropic turbulence. The model coefficient then
gradually decreases for the rest of the simulation. Note that the theoretical value shown as a
reference in Fig. 12 is valid for an ideal case, with Gaussian filter and inertial range scales.
Deviations from this value may be expected to arise due to numerical discretization (which
differs from filtering) and due to the fact that the resolution is not in an ideal inertial range.

For the purpose of quantifying the effect ofC2
r on the simulation, we also examine

the spatially averaged turbulence eddy viscosity,〈νT〉=C2
r 1

2〈|S̃|〉. (The strain-rate is a
function of position in the flow field, but averages may be used for simple comparisons.)
The average strain-rate modulus is plotted in Fig. 13 and〈νT〉/ν is plotted in Fig. 14. The
recorded values are particle averages, calculated directly based on the particle representation
according to:〈|S̃|〉 = ∑i |S̃(Xi )| dVi /

∑
i dVi . For the single ring,〈|S̃|〉 steadily decreases,

dropping to 70% of its initial value at the end of the run. In the colliding ring simulations,
〈|S̃|〉 first rises then decreases. Its maximum value is about 25% higher for simulations
without the turbulence model than for those using the turbulence model. At later stages, the
decrease is slower for crest-to-crest collisions than for the crest-to-trough cases.

The plots of turbulent eddy viscosity in Fig. 14 show the aggregate effects of the model
coefficient and the strain-rate modulus. The variation of the eddy viscosity are dominated
by changes in the model coefficient, whose relative variation has much greater range than
that of the strain-rate modulus. The strain-rate modulus controls the spatial locations where
the influence of the turbulence model is being experienced, as seen in the breakdown of the
volume into quintiles according to vorticity magnitude. In low vorticity regions the turbulent
eddy viscosity can be one or two orders of magnitude smaller than in high vorticity regions.

The indication from the dynamic model coefficient and the turbulent eddy viscosity is that
the single, isolated ring is not turbulent. The rings colliding crest-to-crest may experience
a degree of turbulence during their collision, which then dies off. The rings colliding crest-
to-trough seem to experience a greater degree of turbulence in their collision, and it appears
to last for longer time.

3.3. Kinetic Energy and Enstrophy Evolution

The evolution of the kinetic energy and enstrophy for the various cases is plotted in Fig. 15.
These quantities are evaluated directly from the particle positions and strengths, as outlined
in Appendix A. In the present calculations the flow is incompressible and unbounded, and
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FIG. 8. Surface of constant vorticity magnitude (‖ω‖R2/0= 1.82) for crest-to-crest collision without turbu-
lence model.

so there are no (physical) kinetic energy sources. Kinetic energy can be dissipated by both
molecular viscosity and the turbulence model. Enstrophy is dissipated by molecular and
eddy viscosity, but can also be generated by stretching of vortex lines. In addition, the
particle representation is not conservative, and both the numerical discretization and the
refinement/removal algorithm, may contribute to the evolution of the enstrophy and kinetic
energy.
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FIG. 8—Continued

Figure 15 shows that for the isolated vortex ring the kinetic energy experiences a steady
monotonic decrease, amounting to a 14% drop by the end of the calculation. For the colliding
ring simulations, the kinetic energy decreases in the initial stages at the same rate as for the
single ring, but then the rate of decline increases. The kinetic energy for all four collision
simulations is similar up to timet 0/R2= 15 when the crest-to-crest collision simulation
without a turbulence model begins to level off. The two collision simulations using the
turbulence model also begin to level off at lower levels of kinetic energy. The crest-to-trough
collision results in a lower level of kinetic energy than the crest-to-crest collision. The kinetic
energy for the simulation without turbulence model of the crest-to-trough collision does
not level off but after arriving at a minimum begins to rise quickly. This indicates severe
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FIG. 8—Continued

deterioration in the particle representation since, as mentioned earlier, there are no sources
of kinetic energy in the flow. At very large times,t 0/R2> 22, the runs using the turbulence
model also show a small, unphysical, rise in kinetic energy.

Figure 15 also shows that for the isolated ring the decay of kinetic energy is accompa-
nied by a similar decay in the enstrophy, with a 29% drop at the end of the calculation.
On the other hand, the enstrophy increases in the colliding ring calculations, indicating
significant vortex stretching. When the turbulence model is applied, the enstrophy curve
levels off by t 0/R2= 16 and remains at about 160% its original level for the remainder
of the calculation. For the crest-to-crest collision without turbulence model, a plateau in
the enstrophy curve also occurs att 0/R2= 16, but at higher value; near the end of the
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FIG. 9. Surface of constant vorticity magnitude (‖ω‖R2/0= 1.82) for crest-to-crest collision with turbulence
model.

simulation, however, the enstrophy starts to rise once more. For the crest-to-trough colli-
sion without turbulence model, the enstrophy increases monotonically; the highest growth
rate occur at the end of the calculation, where unphysical growth in kinetic energy is also
experienced.

Kinetic energy spectra are also calculated for the four collision simulations. The spectra
are also computed from the particle positions and strengths, as outlined in Appendix B.
Energy spectra are shown in Fig. 16 for crest-to-crest collisions, and in Fig. 17 for crest-to-
trough collisions. Curves are generated at timest 0/R2= 1.1 (early stages of the
simulation), 13.2 (during the stretching-induced enstrophy rise), 17.6 (the enstrophy plateau),
and 22 or 24.2 (the end of the simulation). Features resolved by the particle filter fall in the
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FIG. 10. Surface of constant vorticity magnitude (‖ω‖R2/0= 1.82) for crest-to-trough collision without
turbulence model.

rangek1<π . A hump in the unresolved part of the spectrum is seen at early times which
may be due to discretization of the vorticity field. For all simulations, low wavenumbers
lose energy as time progresses, while the large wavenumbers gain in amplitude. For the
present low Reynolds number calculations, no extended inertial range exists.

Energy spectra at the end of the simulation are shown together in Fig. 18 for all four
collisions. The crest-to-trough collision without turbulence model, which resulted in a
sharp, unphysical rise in kinetic energy at the end, exhibits more energy at all wavenum-
bers than the other three cases. The latter three have essentially the same shape, with the
crest-to-crest collision without turbulence model having somewhat more energy than the
two simulations with turbulence model.
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FIG. 11. Surface of constant vorticity magnitude (‖ω‖R2/0= 1.82) for crest-to-trough collision with turbu-
lence model.

4. SUMMARY AND DISCUSSION

In this work, a Lagrangian LES scheme is developed. The scheme combines an adaptive
particle method with a simplified dynamic eddy diffusivity model. The particle scheme
incorporates a local redistribution scheme which introduces new particles in regions of
high strain and reduces the number of particles when the particles tend to cluster. The
behavior of the scheme is examined in light of parallel computations of isolated vortex
rings and collisions of two co-axial rings in three-dimensions. Based on these calculations,
the following conclusions are reached:
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FIG. 12. Dynamic model coefficient. Solid lines are for simulations without turbulence model, and dashed
lines are for simulations with turbulence model.

1. The behavior of the dynamic model coefficient is consistent with the flow behavior.
The model coefficient has low magnitude in the initial stages of the computations, when the
flow field is laminar, and only rises to appreciable levels when substantial spatial vorticity
fluctuations develop.

2. For the conditions of the simulations, the turbulence model does not affect the prop-
agation velocity or diameter expansion of the colliding rings prior to reconnection. Once
reconnection starts, the dynamic model limits the rate of enstrophy growth.

FIG. 13. Strain-rate modulus for simulations with (dashed) and without (solid) turbulence model.
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FIG. 14. Top: Eddy viscosity averaged over all vortex elements (solid line) and averaged over quintiles of
the particles ranked by vorticity magnitude (dashed lines) for crest-to-crest collision without turbulence model.
Bottom: Eddy viscosity for simulations with (dash) and without (solid) turbulence model.

3. The incorporation of dynamic SFS model and mesh redistribution scheme leads to
a robust, adaptive Lagrangian particle scheme. This development enables us to extend the
computations into the late stages of vortex ring collisions, where severe strain rates prevail.
Earlier calculations [25] performed using a filament method without a scale removal scheme
exhibited an explosive growth in the number of elements and were consequently restricted
to the early stages of the collision event.

4. The computations of vortex ring collisions capture several distinctive phenomena that
were observed in laboratory experiments [12], including the approach and stretching of
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FIG. 15. Total normalized kinetic energy (top) and enstrophy (bottom). Solid lines are for simulations without
turbulence model, and dashed lines are for simulations with turbulence model.

the rings, the development of three-dimensional azimuthal perturbations, strong interaction
between the vortex cores with local cancellations and reconnections, the generation of
small-scale turbulent structures, and the formation of ringlets propagating radially away
from the center of collision. This indicates that numerical diffusion in the present compu-
tations is sufficiently low, despite the coarse resolution levels used. Note, however, that the
ringlets leaving the collision are at the limits of the particle resolution used, and as a result
appear to be blurred. This is typical of LES, in which structures frequently appear fatter
(filtered) compared to the crisp appearance of the real structures that can be observed in
dye visualization or in DNS.
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FIG. 16. Total energy spectra, crest-to-crest collisions. The top figure is the spectrum for the simulation
without turbulence model and the bottom figure is for the simulation with model. Circles:t 0/R2= 1.1, triangles:
t 0/R2= 13.2, squares:t 0/R2= 17.6, crosses:t 0/R2= 22 or 24.2. The dashed line in the upper-right corner
shows a−5/3 slope.

5. The computations show that the outcome of the co-axial collision depends on the
alignment of the initial azimuthal perturbation imposed on each of the rings. When a crest-
to-crest alignment is imposed, the rings approach each other in such a way that their cores
are locally nearly anti-parallel. This leads to a deformation which resembles the growth of
the Crow instability [26] and, following cancellation and reconnection, to the generation
of small-scale ringlets. On the other hand the crest-to-trough alignment results in a type
of secondary flow instability which leads to a turbulent breakdown of the colliding rings.
These two types of outcomes are consistent with and provide a plausible explanation for
the experimental observations of Lim and Nickels [12].
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FIG. 17. Total energy spectra, crest-to-trough collisions. The top figure is the spectrum for the simulation
without turbulence model and the bottom figure is for the simulation with model. Symbols: same as in Fig. 16.

Despite the advantages outlined above, the computations also indicate that the present
model has some weaknesses which we plan to address in future efforts. One of these
weaknesses concerns the simplified nature of the scale removal process, which is presently
based on merging particles lying within a critical cutoff period. This approach is cer-
tainly less sophisticated than that of hairpin removal, which also involves the relative
orientation of the vorticity vectors in the removal process [2]. Specifically, in hairpin re-
moval only segments with nearly antiparallel vorticity are merged. On the other hand,
in the present scheme merging of particles with closely aligned vorticity vectors is pos-
sible; in this case, merging would have an essentially anti-diffusive character. Extension
of the merging scheme along the lines of hairpin removal [2] or filament surgery [6] ap-
pears to provide a suitable approach for improving this aspect of the particle computa-
tions.
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FIG. 18. Total energy spectra at end of simulations. Circles: crest-to-crest without model, triangles: crest-to-
crest with model, crosses: crest-to-trough without model, squares: crest-to-trough with model. All four cases are
compared att0/R2= 22 for the simulations without turbulence model andt0/R2= 24.2 for the simulations with
model. The slightly later time is selected for the simulations with model because the dissipation due to the model
slightly slows the evolution of the rings.

Another area where additional work is needed is in clearly quantifying the effect of the SFS
model, and distinguishing it from the effect of the removal scheme. To this end, one would
need to extend the Lagrangian computations to model problems where the turbulence is
well characterized, e.g. forced isotropic turbulence. An extension of the present Lagrangian
scheme to accommodate such a setup is being explored.

Finally, in the present applications the dynamic coefficient is obtained by averaging
over all the particles, thus combining information from very different regions of the flow
(e.g. highly strained regions around vortex cores and “inactive” regions in the wakes)
to determine a single coefficient in space. A conceptually more appealing method is to
average in time following particle trajectories [27], an approach that is especially suited
for Lagrangian methods. Extensions of the current scheme to incorporate such Lagrangian
averaging should also be explored in future work.

APPENDIX A. EVALUATION OF ENSTROPHY AND KINETIC ENERGY

In this appendix we derive expressions for the total enstrophy and kinetic energy corre-
sponding to a vorticity field given by the particle representation

ωN(x) =
N∑

i=1

ζ i dVi fδ(x− Xi ). (A-1)

A.1. Enstrophy

The total enstrophy,W, is defined by

W ≡
∫ ∫ ∫

1

2
|ω(x)|2 d3x. (A-2)



340 MANSFIELD, KNIO, AND MENEVEAU

The total enstrophy corresponding to the vorticity field in (A-1) is thus given by

W = 1

2

∫ ∫ ∫ ( N∑
i=1

ζ i dVi fδ(x− Xi )

)2

d3x

= 1

2

N∑
i=1

N∑
j=1

{(ζ i · ζ j ) dVi dVj I (Xi ,X j )}, (A-3)

where

I (Xi ,X j ) ≡
∫ ∫ ∫

fδ(x− Xi ) fδ(x− X j ) d3x. (A-4)

Using a simple change of variables,I can be rewritten as

I (Xi ,X j ) =
∫ ∫ ∫

fδ

(
x− 1

2
ri j e
)

fδ

(
x+ 1

2
ri j e
)

d3x, (A-5)

wherer i j ≡ |Xi − X j | is the distance betweenXi andX j ande is the unit vector in the
direction ofXi − X j , i.e., e = (Xi − X j )/ri j . Since the core smoothing functionfδ is
radially symmetric,I is independent ofe. Consequently, we can write

I (Xi ,X j ) = g(|Xi − X j |), (A-6)

where

g(r ) ≡
∫ ∫ ∫

fδ

(
x− 1

2
r e
)

fδ

(
x+ 1

2
r e
)

d3x. (A-7)

Using the above definitions, the total enstrophy can be expressed as:

W = 1

2
g(0)

N∑
i=1

{|ζ i |2 dV2
i

}+ N−1∑
i=1

N∑
j=i+1

{(ζ i · ζ j ) dVi dVj g(ri j )}. (A-8)

The core smoothing functionfδ used in this work is

fδ(x) ≡ 3

4πδ3
exp

(
−|x|

3

δ3

)
. (A-9)

Choosing a cylindrical coordinate system to perform the integration, with axial direction
aligned withe, we have

g(r ) = 9

16π2δ3
I(r ∗), (A-10)

where

r ∗ ≡ r

2δ
(A-11)
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and

I(ξ) ≡ 2π
∫ +∞
−∞

∫ ∞
0
ρ exp[−((z− ξ)2+ ρ2)3/2− ((z+ ξ)2+ ρ2)3/2] dρ dz. (A-12)

The kernel of the above integral decays quickly asξ→∞, so thatI can be accurately
evaluated by numerical integration over a sufficiently large compact set.I(ξ) has Gaussian
shape forξ <1. However, forξ >1, it falls noticeably below a true Gaussian. Thus,I is
modeled as

I(ξ) ≈ 2π

3
exp

[
−
(

ξ

c(ξ)

)2
]
, (A-13)

i.e., as a Gaussian with variable width,c(ξ). A good fit forc(ξ) is

c(ξ) =


0.5944 ξ ≤ 0.25

0.5944+ 0.0103(ξ − 0.25)2− 0.0812(ξ − 0.25)3 0.25< ξ < 1

0.5645− 0.09406(ξ − 1) 1≤ ξ ≤ 7

0.00014 ξ > 7.

(A-14)

Using the above results and approximations,g(r ) is evaluated as

g(r ) = 3

8πδ3
exp

[
−
(

r ∗

c(r ∗)

)2
]
. (A-15)

Finally, we have

W = 3

8πδ3

[
1

2

N∑
i=1

{|ζ i |2 dV2
i

}+ N−1∑
i=1

N∑
j=i+1

{
(ζ i · ζ j ) dVi dVj exp

[
−
(

r ∗i j
c(r ∗i j )

)2
]}]
(A-16)

with c computed using Eq. (A-14).

A.2. Kinetic energy

Evaluation of the total kinetic energy,K , is more complicated than calculation of the
total enstrophy because (a) expressions forK involve tensor manipulations, and (b) special
attention is required for kernels with slow decay asr→∞.

The total kinetic energy associated with a given particle distribution is found by inserting
the desingularized Biot–Savart law,

u(x) = − 1

4π

N∑
i=1

(x− Xi )× ζ i

|x− Xi |3 κδ(x− Xi ), (A-17)

into the definition ofK ,

K ≡
∫ ∫ ∫

1

2
|u|2 d3x. (A-18)
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Expressingu andζ in component form, we have

K = 1

2

1

(4π)2

N∑
i=1

N∑
j=1

[ζp,i dVi ζp, j dVj J(Xi ,X j )−ζp,i dVi ζq, j dVj L pq(Xi ,X j )], (A-19)

wherekδ(x)≡ κδ(x)/|x|3,

J(Xi ,X j ) ≡
∫ ∫ ∫

(xp − Xp,i )(xp − Xp, j )kδ(x− Xi )kδ(x− X j ) d3x (A-20)

L pq(Xi ,X j ) ≡
∫ ∫ ∫

(xp − Xp,i )(xq − Xq, j )kδ(x− Xi )kδ(x− X j ) d3x. (A-21)

Xp,i denotes thep component ofXi , p= 1, 2, 3 andζq, j is theq component ofζ j . Sum-
mation is understood whenever the indicesp andq are repeated. Following the discussion
above,J and L depend on the distance,ri j , betweenXi andX j only. To highlight this
dependence, we rewriteJ andL as

J(Xi ,X j ) =
∫ ∫ ∫ (

xp − ri j

2
ep

)(
xp + ri j

2
ep

)
kδ

(
x− ri j

2
e
)

kδ

(
x+ ri j

2
e
)

d3x

(A-22)

L pq(Xi ,X j ) =
∫ ∫ ∫ (

xp − ri j

2
ep

)(
xq + ri j

2
eq

)
kδ

(
x− ri j

2
e
)

kδ

(
x+ ri j

2
e
)

d3x,

(A-23)

wheree≡ (Xi − X j )/ri j as before.
Equation (A-19) can be simplified by manipulating the tensor expressions, and recasting

the integrals in an appropriate cylindrical coordinate system. The velocity smoothing kernel
corresponding tof is κ(r )= 1− exp(−r 3) [15]. For this choice, we obtain

K = 1

2

1

(4π)2
hδ(0)

N∑
i=1

{|ζ i |2 dV2
i

}+ 1

(4π)2

N−1∑
i=1

N∑
j=i+1

{(ζ i · ζ j ) dVi dVj hδ(ri j )}, (A-24)

where

hδ(r ) ≡ 1

δ
h
( r

2δ

)
(A-25)

h(r ) ≡ h1(r )+ h2(r ) (A-26)

h1(r ) ≡ 2π
∫ +∞
−∞

∫ ∞
0
ρ(ρ2+ (z− r )(z+ r ))k1(ρ, z)k2(ρ, z) dρ dz (A-27)

h2(r ) ≡ 2π
∫ +∞
−∞

∫ ∞
0
ρ(z− r )(z+ r )k1(ρ, z)k2(ρ, z) dρ dz (A-28)

k1(ρ, z) ≡ 1− exp[−(ρ2+ (z− r )2)3/2/δ3]

(ρ2+ (z− r )2)3/2
(A-29)

k2(ρ, z) ≡ 1− exp[−(ρ2+ (z+ r )2)3/2/δ3]

(ρ2+ (z+ r )2)3/2
. (A-30)

(A-31)
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Numerical integration is performed forh1 andh2 separately, and curve fits are made of
those integrals as functions ofr . The curve fits are combined to produce

h(r ) ≈
{

A+ Br2+ Cr3+ Dr 4+ Er5 0≤ r ≤ 1.5
2π
r − F

r 3 r > 1.5,
(A-32)

whereA= 8.395704,B=−5.629156,C= 2.334138,D= 0.623281,E=−0.375890, and
F = 0.945098. Consequently, the kinetic energy is computed using

K = 1

(4π)2

[
hδ(0)

2

N∑
i=1

{|ζ i |2 dV2
i

}+ N−1∑
i=1

N∑
j=i+1

{(ζ i · ζ j ) dVi dVj hδ(ri j )}
]

(A-33)

with h from Eq. (A-32).

APPENDIX B. ENERGY SPECTRUM

The radial energy spectrum is calculated directly from the particle distribution, following
the procedure outlined below. We take advantage of the classical results for homogeneous
flow where the velocity spectrum is simply the vorticity spectrum divided byk2 [28], where
k is the magnitude of the wavenumber vectork, k≡ |k|. We begin by transforming the
numerical vorticity distribution,

ω(x) =
N∑

i=1

ζ i dVi fδ(x− Xi ), (B-1)

to Fourier space; we have

ω̂(k) ≡
(

1

2π

)3 ∫ ∫ ∫
ω(x) exp(−i k · x) d3x

=
(

1

2π

)3 N∑
i=1

ζ i dVi exp(−i k · Xi )

∫ ∫ ∫
fδ(r) exp(−i k · r) d3r. (B-2)

The conjugate of the vorticity amplitude is

ω̂∗(k) =
(

1

2π

)3 N∑
j=1

ζ j dVj exp(+i k · X j )

∫ ∫ ∫
fδ(r) exp(+i k · r) d3r. (B-3)

Thus, the vorticity norm is given by

|ω̂|2(k) =
(

1

2π

)6

R(k)S(k), (B-4)

where

R(k) ≡
∫ ∫ ∫

fδ(r) exp(−i k · r) d3r
∫ ∫ ∫

fδ(r) exp(+i k · r) d3r (B-5)
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